
AFRL-IF-RS-TR-2006-182
Final Technical Report
May 2006

AUTONOMIC FUSELET SPECIFICATION AND
COMPOSITION

ORIELLE, LLC

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2006-182 has been reviewed and is approved for publication

APPROVED: /s/

 DALE W. RICHARDS
 Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES W. CUSACK
 Chief, Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
 MAY 2006

2. REPORT TYPE
FINAL

3. DATES COVERED (From – To)
Mar 05 – Mar 06

5a. CONTRACT NUMBER
FA8750-05-C-0088

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

AUTONOMIC FUSELET SPECIFICATION AND COMPOSITION

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
558J

5e. TASK NUMBER
TD

6. AUTHOR(S)

Peter H. Mills

5f. WORK UNIT NUMBER
04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ORIELLE, LLC
121 West Sweet Ave, Suite 124
PO Box 8922
Moscow ID 83843

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSE
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-182

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; distribution unlimited. PA# 06-370

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A framework for autonomic fuselet business logic development was developed, using semantic web services and workflow
technologies to specify fuselet information needs, to define an executable workflow model for its business logic, and to perform
workflow composition from a goal and specifications to executable model in a manner that enables feedback mechanisms that can
assess and adapt the process model to satisfy needs. The framework for autonomic fuselet specification and composition consists of:
(a) the definition of ontology-based fuselet specifications in a variant of the Web Ontology Language for Services (OWL-S), (b) the
definition of fuselet business logic in the Business Process Execution Language (BPEL), and (c) a workflow composition engine that
composes a fuselet-based workflow from other fuselets by deriving a BPEL process model from a fuselet goal and a set of fuselet
specifications.

15. SUBJECT TERMS

Joint Battlespace Infosphere (JBI), Fuselets, Semantic Web, Web Services, Workflow, Ontology, OWL, BPEL

16. SECURITY CLASSIFICATION OF:

19a. NAME OF RESPONSIBLE PERSON
Dale W. Richards

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

101
19b. TELEPONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

keyter
Text Box

i

Table of Contents

Table of Contents………………………………………………………………………… i
List of Figures……………………………………………………………………………..ii
Summary...1
1. Problem Statement...3
2. Objective ...5
3. Technical Approach...6
4. Ontology-Based Fuselet Specification ..9

4.1 OWL-S for Specification of Fuselet Information Needs. ..9
4.2 Applying OWL-S to Fuselets ..9
4.3 Alternatives ...13
4.4 Metrics and Ontology Derivation ...14
4.5 Example Specification..14

5. BPEL-Based Fuselet Business Logic ..15
5.1 BPEL for Capturing Fuselet Business Logic. ...15
5.2 Expressing Individual Fuselets in BPEL...17
5.3 Expressing Fuselet Collections in BPEL...19
5.4 Demonstration of Fuselet Workflows in BPEL...19

6. Workflow Composition Engine ..22
6.1 Overall Design ..22
6.2 Candidate Technologies ...22
6.3 Supporting Ontology-Based Subtyping in Inference...23
6.4 Detailed Architecture..25
6.5 Metrics and Feedback Mechanisms for Assessment and Reengineering26
6.6 Example of Workflow Composition ...27

7. Conclusions...29
7.1 Lessons Learned ...29
7.2 Recommendations for Future Work ..30

References...32
Symbols, Abbreviations, and Acronyms..34
Appendix A. Demonstration Script. ..35

A.1 Overview..35
A.2 Objective..35
A.3 Scenario ..40
A.4 Demonstration Programs ...41

ii

List of Figures

Figure 1. Architecture for Autonomic Fuselet Specification and Composition 6
Figure 2. Instantiation of the Generic Fuselet Template... 20
Figure 3. Fuselet Partnerlinks and Interfaces .. 21
Figure 4. Architecture of the Workflow Composition Engine .. 25
Figure 5. Metric Mapping XPath Selectors to Ontology Terms... 26
Figure 6. Autonomic Fuselet Assessment and Re-Engineering... 27
Figure 7. Extracted Fuselet Specifications, Goal, and Instances in Readable Form. 41
Figure 8. Service Ontology with Selector Terms.. 44
Figure 9. Tracker Fuselet - Service Profile. .. 58
Figure 10. Publish Subscribe - WSDL Interface Definition... 62
Figure 11. Publish Subscribe - BPEL Business Logic. ... 70
Figure 12. Generic Fuselet - WSDL Interface Definition... 73
Figure 13. Generic Fuselet - BPEL Business Logic. ... 79
Figure 14. Goal Specification - Refined Threat Subscription.. 84
Figure 15. Running Fuselet Instances .. 85
Figure 16. Workflow Composition - Beanshell Demonstration Script 87
Figure 17. Extracted Rules for Fuselet Synthesis ... 89
Figure 18. Synthesized Fuselet Workflow ... 96

1

Summary

A fuselet is typically a persistent process that communicates only by publish, subscribe, and
query in order to perform information transformation. It is intended to be deployed, for example,
within the Joint Battlespace Infosphere, a framework for global information sharing and
information management. Fundamental to the viable use of fuselets is technology that enables
the succinct expression of fuselets as well as their management in a runtime framework that
supports autonomic execution, that is, assessment and reengineering of the fuselet to meet
information needs. Key in turn to such autonomic computation is a method for reengineering
fuselets: one such method is that of automated workflow composition.

The overall objective of this research effort was to develop a proof-of-concept demonstration of
autonomic fuselet business logic development that uses semantic web services and workflow
technologies to specify fuselet information needs, to define an executable workflow model for its
business logic, and to perform workflow composition from a goal and specifications to
executable model in a manner that enables feedback mechanisms that can assess and adapt the
process model to satisfy needs. The specific objectives were to: (a) define an ontology-based
fuselet specification expressed in a variant of the Web Ontology Language for Services (OWL-
S), (b) define a notation for fuselet business logic expressed in a restricted subset of the Business
Process Execution Language (BPEL), together with the identification of a set of basic
manipulation functions to flesh out the business logic, and (c) design and implement a workflow
composition engine for deriving a BPEL workflow model from a goal and a set of fuselet
specifications.

This report first describes the notation and standards used for ontology-based fuselet needs
specification. Then specification of a fuselet's information needs is considered, that is, what it
consumes and produces, using emerging semantic web service standards. Specifically the
behavior of a fuselet is captured in OWL-S using Prolog-like input and output relations in a form
that is amenable to reasoning using conventional theorem provers enhanced with ontology
subtyping.

Techniques for capturing a fuselet's business logic, that is, the internals of how it consumes and
produces information to satisfy its specified needs, in an executable workflow model using Web
Services and the Business Process Execution Language (BPEL) are then described. A key facet
underlying this approach is the modeling of fuselets as web services. Expressing a fuselet as a
workflow involves both capturing its interface using the Web Service Definition Language
(WSDL) and its executable logic using BPEL. It is also advantageous to expose the publish and
subscribe operations invoked by the fuselet as a BPEL process. The use of workflow
technologies such as BPEL to implement fuselets enables both their assembly at the micro-scale
using Joint Battlespace Infosphere (JBI) Common API (CAPI) publish-subscribe operations, as
well as the composition of fuselets at the macro-scale to realize collective behavior, for example,
in demand-driven workflow composition.

Lastly, the design and implementation of a workflow composition engine that composes fuselets
from other fuselets by deriving a BPEL workflow model from a fuselet goal and other fuselet

2

specifications is described. In the design of the workflow composition engine a broad spectrum
of candidate planning technologies were evaluated with an eye towards those that could have
their inference mechanisms extended to support ontology-based sub-typing within a Java
environment.

Such a workflow composition engine can be used at the both the micro-scale in a fuselet
production environment, that is, to develop business logic for a single fuselet and semi-
automatically guide its development by choosing from palette of subtyped manipulation
functions and semantically matching fuselets, and at the macro-scale for demand-driven adaptive
workflow composition. In particular within the larger picture of autonomic computing, such a
workflow composition engine is meant to work in tandem with monitoring and feedback
mechanisms that assess the fuselet output behavior, that is, compares its outputs to the original
specification, and then re-engineer the workflow model to improve and maximize the value of
information produced by the fuselet. As part of this research effort metrics and feedback
mechanisms were examined as to their potential for enabling assessment and re-engineering.

The report concludes a description of lessons learned and recommendations for future work,
followed by an appendix listing example specifications and demonstration programs.

3

1. Problem Statement

A next step in the evolution of complex large-scale systems is that of autonomic computing,
which like the human nervous system is self-managing, self-configuring, self-healing, and self-
protecting without conscious management. An autonomic computing system instruments the
underlying computing elements with sensors and effectors, and then uses independent agents to
monitor, assess, plan, and execute adaptations to the elements and their configuration in order to
achieve goals based on policies and metrics. As is becoming evident from a consensus in many
research efforts, the building blocks of such adaptive survivable systems are a confluence of
semantic web services [OWL-S], grid computing, workflow-based business process logic
specifications and execution engines [BPEL-spec], and automated program construction
techniques based on theorem proving and planning that can effect both workflow adaptation on
the large scale and, on the micro-scale, semi-automated program synthesis from specifications
[ACC04, MWG04, RKM04]. Building such systems requires a development environment that
from the ground up incorporates the required concepts of logical specification and semi-
automatically derivable process logic that can be monitored to see if it satisfies behavior metrics.
Not surprisingly, and as alluded to above, the same techniques and machinery that effect
adaptation through monitoring and planning can be applied to guide a developer from
specification to program assembly.

In particular, the above building blocks are key to a fuselet production environment whose
artifacts are to be used in an autonomic fuselet runtime system that can monitor and adapt
collective fuselet behavior to meet end-user information requirements. A fuselet is typically a
persistent lightweight process that communicates only by the medium of publish-subscribe, in
particular using emerging global information frameworks such as the JBI that support such a
communication paradigm. A fuselet's business logic can be couched in notations ranging from
Java-based scripting languages to web service composition languages such as the Business
Process Execution Language (BPEL), recently ratified as an Organization for the Advancement
of Structured Information Standards (OASIS) standard. In particular, BPEL is a means of
invoking and composing other web services in a workflow orchestration, and is expressed in the
Extensible Markup Language (XML) itself. BPEL is particularly attractive as a means of
specifying a fuselet's business logic, since it provides simple constructs for XPath-based
selection of inputs, akin to those used for subscription message selectors, as well as a
comprehensive array of constructs for orchestrating programs including guarded
nondeterministic message-passing, used to form the so-called "process logic". While it doesn't
directly provide for low-level manipulation and computation functions, BPEL has placeholders
for augmenting its process logic with functions sufficient to yield the "business logic" of fuselets.

From an autonomic perspective, fuselet development and execution entails more than just
providing its business logic. Fuselet business logic development and execution proceeds from:
(a) a high-level specification of its needs, through (b) construction of its business logic using
other fuselet components to yield a fuselet workflow model that satisfies the needs, to (c)
monitoring its execution in a way that compares its outputs to the original specification, and
using these feedback mechanisms to modify and reengineer the original workflow. Key in turn

4

to such autonomic computation is a method for reengineering fuselets: one such method is that of
automated workflow composition.

One emerging technology for needs specification that fits into this autonomic composition
framework is that of semantic web services, specifically the Web Ontology Language for
Services (OWL-S), that describes process behavior using an ontology-based XML specification
that provides a service profile to define its surface logic of its behavior, a process model to
describe its internal execution, and a grounding to map the model onto web services standards
such as WSDL for invocation and Universal Description, Discovery and Integration (UDDI) for
discovery. Ontologies define relations, properties, and rules of inference about terms used in
XML documents. Concomitantly with OWL-S there are several research efforts which have
used it as a driving vehicle for automatic workflow composition, specifically derivation of BPEL
or its equivalent for the process model [ACC04, MWG04, and RKM04]. A promising approach
to fuselet business logic development and its execution in an autonomic environment is thus to
leverage these emerging technologies for semantic web services and workflow orchestration.

5

2. Objective

The objective of this research effort was to develop a proof-of-concept demonstration of
autonomic fuselet business logic development that uses semantic web services and workflow
technologies to specify fuselet information needs, to define an executable process model for its
business logic, and to perform workflow composition from a goal and specifications to
executable model in a manner that enables feedback mechanisms that can assess and adapt the
process model to satisfy needs. Specifically this research effort sought to develop an ontology-
based specification, workflow process model, and workflow composition engine for fuselets that
adapts emerging technologies such as the Web Ontology Language for Services (OWL-S) and
BPEL (Business Process Execution Language) to the domain-specific problem of autonomic
fuselet composition and execution.

It is imperative to adopt or adapt emerging technologies such as OWL-S for semantic web
services and BPEL for composing web services as building blocks for a fuselet production
environment, both to track technology and to exploit techniques such as OWL/BPEL-based
automated workflow composition algorithms as well as tools such as graphical editors that are
part and parcel of BPEL implementations. A fundamental observation is that it may be possible
to significantly enhance the viability and robustness of general techniques in semantic web
services and automated workflow composition by restricting the domain of discourse to the
fundamental characterization of fuselets, i.e., that they can only interact through publish,
subscribe, and query operations.

This research effort can serve as a foundation for the specification and guided synthesis of
fuselets in a manner that can be readily expanded into advanced semantics-based fuselet
authoring and autonomic runtime management capabilities.

6

3. Technical Approach

The technical approach to realizing a foundation for autonomic fuselet specification and
composition consists in developing: (1) An ontology-based fuselet specification expressed in a
variant of OWL-S, which uses the service profile to capture both a Horn Clause (Prolog-like)
logic specification with basic manipulation terms and message-selector types taken from an
ontology, as well as potentially augmented with Quality of Service (QOS) metrics that map
process input and output behavior onto ontology-based satisfaction terms, (2) a notation for
fuselet business logic expressed in BPEL to capture the process model, together with basic
manipulation functions to flesh out the business logic, and (3) a workflow composition engine
for deriving a BPEL workflow model from a goal and a set of fuselet specifications, that can
operate both at the micro- and macro-scale.

Figure 1. Architecture for Autonomic Fuselet Specification and Composition

Figure 1 illustrates the architecture for autonomic fuselet specification and composition, and how
it fits in with the larger vision of an autonomic fuselet runtime environment. In Figure 1, the
upper right in red area shows the fuselet service specification using a variant of OWL-S
preconditions and postconditions to capture the relations between outputs (“publish” on the left-
hand side of an if-statement) and inputs ("subscribe" on the right-hand side) that maximally

Fuselet Specification

• Service Profile (OWL-S)

Preconditions / Effects (SWRL)

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

publish(topicb, selectorb, transformb(X))
subscribe (topic3, selector3, X), …

Transform functions
Message selectors

Service Ontology

Fuselet Business Logic

• Process Model

BPEL flow constructs
Business logic extensions

BPEL
Engine
BPEL
Engine

WS-CAPIMonitor

Fuselet Goal

subscribe (topicc,
selectorc, X)

Automated
Workflow

Composition
• Grounding (WSDL)

BPEL snippets

Manipulation Library

Fuselet Specification

• Service Profile (OWL-S)

Preconditions / Effects (SWRL)

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

publish(topicb, selectorb, transformb(X))
subscribe (topic3, selector3, X), …

Fuselet Specification

• Service Profile (OWL-S)

Preconditions / Effects (SWRL)

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

publish(topicb, selectorb, transformb(X))
subscribe (topic3, selector3, X), …

Fuselet Specification

• Service Profile (OWL-S)

Preconditions / Effects (SWRL)

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

publish(topicb, selectorb, transformb(X))
subscribe (topic3, selector3, X), …

Transform functions
Message selectors

Service Ontology

Transform functions
Message selectors
Transform functions
Message selectors

Service Ontology

Fuselet Business Logic

• Process Model

BPEL flow constructs
Business logic extensions

Fuselet Business Logic

• Process Model

BPEL flow constructs
Business logic extensions

BPEL
Engine
BPEL
Engine

WS-CAPI

BPEL
Engine
BPEL
Engine

WS-CAPI

BPEL
Engine
BPEL
Engine
BPEL
Engine
BPEL
Engine

WS-CAPIMonitor

Fuselet Goal

subscribe (topicc,
selectorc, X)

Fuselet Goal

subscribe (topicc,
selectorc, X)

Fuselet Goal

subscribe (topicc,
selectorc, X)

Automated
Workflow

Composition

Automated
Workflow

Composition
• Grounding (WSDL)

BPEL snippets

Manipulation Library

BPEL snippetsBPEL snippets

Manipulation Library

7

cover all possible behaviors. Within the logic specification, a hierarchy of terms denoting
message-selector types and manipulation functions, shown in the upper right hand of the figure,
are used. Ontology-based specification of selectors and manipulation functions allows
leveraging ontology-based browsers to guide novice uses in indicating the type of information
required, and is also key to enabling ontology-based inference that extends resolution with
ontology subtyping. Also in the service profile may be a Quality of Service (QOS) metric (not
shown in the figure) that specifies, for example, how to map actual XPath-based selectors onto
selector terms.

The business logic of the fuselet is described using BPEL together with a referenced set of
manipulation functions to flesh out the business logic, shown in the lower right of Figure 1.
Strictly speaking, an OWL-S specification consists of a service profile, a grounding that maps
onto concrete substrates such as WSDL, and a process model typically expressed in a situation
calculus such as ConGolog that is used as a plan in Hierarchical Task Network (HTN) planners.
In the domain of fuselets, BPEL suffices as a more concrete description of the process model.

The business logic is then run on a conventional BPEL engine, shown in the lower left. The idea
in autonomic computing is that monitors attached to the engine or instrumented into the code can
capture the runtime behavior, and analyze it to see if it meets the specified user needs. If not, or
to maximize the value of the information, the workflow can be reengineered. When the process
model captures a collection of fuselets, reengineering in that case reduces to workflow
composition from a goal and specifications to a BPEL workflow. This workflow is then run on
the engine, to complete the analyze-plan-execute cycle.

The mechanics of workflow composition have dual-use both at the macro-scale as above to
dynamically adjust collective fuselet behavior to satisfy metric-based policies, as well as at the
micro-scale in a fuselet production environment, that is, to develop business logic for a single
fuselet and semi-automatically guide its development by choosing from palette of subtyped
manipulation functions and semantically matching fuselets.

This research and development effort was divided into three tasks that address the above
technical objectives. These tasks were:

Task 1. Define Ontology-Based Fuselet Logic Specification.
In this task an ontology-based fuselet logic specification was expressed in a variant of OWL-S,
which uses the service profile to capture a Horn Clause (Prolog-like) logic specification with
basic manipulation terms and message-selector types taken from an ontology. The Horn clauses
are basically if-then clauses of the form:

publish(topic, outCondition, transform(X,Y))

IF subscribe(topic1, selector1, X) AND subscribe(topic,2,
selector2, Y)

The logic is enhanced to make the selectors terms in an ontology, and to use ontology-based
subtyping in its inference of what matches the arguments during Prolog-like resolution. The
above approach separates the problem of deciding which fuselet inputs match other fuselet

8

outputs into two stages: a first stage that maps XPath-based input selectors into ontology terms,
and a second stage that uses those terms to reason about fuselet composition and needs
satisfaction.

Task 2. Define BPEL-Based Fuselet Business Logic.
In this task capture the fuselet process model in BPEL together with manipulation functions to
flesh out the business logic were examined. Asynchronous techniques to invoke the publish-
subscribe API exposed as a BEPL web service were also examined.

Task 3. Design and Implement a Workflow Composition Engine.
In this task a workflow composition engine that can derive a BPEL workflow model from a goal
and a set of fuselet specifications was developed. Its algorithm extends Prolog-like inference on
the specifications with ontology-based subtyping. The implementation leverages the
Prova/Manadarax inference engine and the Jena Semantic Web Toolkit.

Use of metrics that map XPath-selectors characterizing published results to their equivalent
ontology terms in the specification: such metrics might be used to incorporate metric-based
feedback mechanisms into the larger autonomic cycle which would then re-engineer the
workflow orchestration to optimize needs satisfaction was also considered and documented.

The remainder of this document describes the key results from the research effort, and concludes
with a summary of lessons learned and recommendations for further research. Lastly, concrete
examples of fuselet specification and composition in a demonstration scenario of radar tracking
from sensor returns are provided.

9

4. Ontology-Based Fuselet Specification

4.1 OWL-S for Specification of Fuselet Information Needs.

4.1.1 What is OWL-S
The ontology-based fuselet logic specification is expressed in a variant of the Web Ontology
Language for Services (OWL-S). OWL-S uses OWL, the successor to DAML and a draft W3C
standard, to provide an upper ontology model for web services. OWL, in turn, is a notation for
describing ontologies in the Extensible Markup Language (XML), where ontologies specify the
hierarchy and properties of terms used in documents. An OWL-S specification for a process has
three sections:

(1) A service profile, which specifies what the service provides,

(2) A process model, which specifies how the service does it, and

(3) A grounding, which specifies how to access the service, i.e., the mapping to concrete
web service specifications such as WSDL.

4.1.2 Benefits of OWL-S
It is important to examine the technical feasibility of using OWL-S as a fuselet specification for
several reasons. First, OWL-S is a recent draft W3C standard, so it may possibly be widely
adopted. Second, OWL-S is based on OWL which in turn is based on the Resource Description
Framework (RDF) and RDF-Schema, the fundamental enabling technologies for the "semantic
web" which uses XML to express subject-verb-object triples. Using such a semantic-based web
service specification enables using the array of emerging web technologies for semantics-based
process discovery, enactment, and composition. Third, OWL-S is largely driven by AI planning
notations, and incorporates in its service profile more than just inputs and outputs, but also
preconditions and effects, which can be used for AI planning and web service composition. The
latter has in particular potential advantages for specifying fuselets within an autonomic or self-
configuring runtime environment, where here autonomic means the ability to assess whether
information needs are being satisfied by the fuselet execution, and as needed to re-engineer the
fuselet or workflow of fuselets.

4.2 Applying OWL-S to Fuselets

4.2.1 Service profile, process model, and grounding
For the purposes of this effort, and driven in part by an evaluation of how workflow composition
using AI planning techniques would be used for fuselets, OWL-S was applied to fuselet
specification as follows. First, as is described in more detail below, a portion of the service
profile's Parameters and Inputs/Outputs/Preconditions/Effects (IOPE) were used to capture a
Horn Clause ("Prolog-like") logical specification for fuselet publish and subscribe actions with
basic manipulation terms and message-selector types taken from an ontology. The if-then Horn

10

clauses are coded using the Semantic Web Rule Language (SWRL) which is admissible under
OWL-S.

Second, the usual composite process model for OWL-S, which might typically be encoded using
SWRL or a situation calculus such as ConGolog, was largely bypassed and an executable
process definition in the Business Process Execution Language (BPEL) substitute for it. OWL-S
provides three types of process models: atomic, which corresponds to directly invocable web
services, composite, which corresponds to using flow constructs invoking other services to build
up a service, and simple, which corresponds to an abstract view of a composite process.

A simple abstract process view of the fuselet (which actually holds the parameter and IOPE
definitions that are in turn referenced from the profile), as well as a composite process definition
to hold the BPEL are provided. Since Hierarchical Task Network (HTN) planning for web
service composition, which uses the composite process model as a plan template to derive an
executable workflow, will not be used, an alternative executable model for the OWL-S
composite flow constructs can be substituted.

Third, a form of grounding is encoded in the OWL-S for fuselets, to enable the execution of web
service composition results using BPEL and WSDL.

It bears emphasizing that using a notation such as OWL-S does not require a priori that the
fuselets be web services, although there is significant merit in modeling fuselets as web services.
Rather, as mentioned earlier, using semantic web notations enables the application of ontology-
based inference techniques, and provides a richer description of the relations between fuselet
inputs and outputs that includes a more logic-like specification of preconditions and effects.

4.2.2 Encoding fuselet information needs using if-then clauses
The basic approach taken in this effort was to increase the robustness of reasoning by restricting
the domain of discourse to the fundamental characteristics of fuselets, specifically to restrict an
otherwise general OWL-S specification to a simple logic formulation whose terms are publish-
subscribe operations.

Parameterized fuselets are specified using sets of if-then statements, with one if-then statement
for each type of published information, of the form:

tracker_fuselet(Z) {
 publish(topicOut1, selectorOut1, transformOut1(X,Y,Z))
 IF subscribe(topicIn1, selectorIn1, X)
 AND subscribe(topicIn2, selectorIn2, Y)
 publish(topicOut2, selectorOut2, transformOut2(X,Y,Z))
 IF subscribe(topicIn3, selectorIn3, X)
 AND subscribe(topicIn4, selectorIn4, Y)
 [...]
}

where:
topics: are JBI information object types,
selectors: are JBI selector predicates characterizing input or output conditions,

11

transforms: are transform functions,
X, Y, Z: are logical variables.

The above describes which inputs must be provided to produce each output type, and is basically
a Horn Clause (Prolog-like) logic specification with manipulation terms and message-selector
types taken from an ontology. As in Prolog, discovery or AI planning is used to determine what
other fuselets must be run to provide the required subscriptions for this fuselet, term matching
(also called unification) is used to decide which fuselet's publications match or refine the
required subscriptions. Unlike Prolog, here term matching on transforms and selectors uses
ontology subtyping. This means that if another fuselet publishes a more refined type of
information than what is required for this fuselet, running it would still provide what is needed.

In general, the minimal requirement for deciding whether a subscription demand can be satisfied
by another fuselet’s publication is that the selectors intersect or overlap; that is, a subscription is
admissible as a match if its concrete XPath selector intersects with that of a publication. For
purposes of this effort, and in line with some of the workflow composition literature [ACC04,
MWG04], ontology subtyping is used as the criteria for matching. Such subtyping translates
directly into SWRL as OWL subclass predicates. However, as is discussed in the conclusion,
more complex OWL and SWRL statements could be used to capture more sophisticated
matching criteria.

For example, the specifications for a threat fuselet that as a consumer depends on the
publications of a producer tracker fuselet are as follows:

Threat Fuselet: publish(threatTopic, threatSelector, threatTransform (X))
 IF subscribe(trackTopic, trackSelector, X).
 […]

Tracker Fuselet: publish(trackTopic, refinedTrackSelector, trackTransform
(X, Y))

 IF subscribe(sensorTopic, sensorSelector, X) AND
 subscribe(sensorTopic2, sensorSelector2, Y).

Here, reasoning uses ontology subtyping on selector terms to infer that the demand for a
subscription is satisfied by another fuselet publishing a refined type, in this case that the
trackSelector subscription of the threat fuselet can be satisfied by the refinedTrackSelector
publication of the tracker fuselet. A separate stage would map from predicates (XPath) to
selector terms, which might also be captured in the service profile; such a mapping would then
be used as a metric for feedback mechanisms that compare the output to the needs as an actuator
for reengineering. It also bears noting that, for the initial formulation, query is treated identically
to subscribe, since a fuselet that needs a query would require a publication to have occurred in
the past to satisfy it; a more refined approach might be along the lines of temporal logic that
distinguishes past occurrences from those ongoing.

Such a notation enhances simpler versions of fuselet metadata that might only specify inputs and
outputs, by additionally providing preconditions and effects. Such a Prolog-like specification
can then be used by theorem provers such as Prova, with its inference mechanisms enhanced to

12

use ontology-based subtyping when unifying terms during resolution, to perform automated
fuselet composition. The above notation has the advantage of separating the decision as to which
fuselet inputs match other fuselet outputs into two stages: a first stage that maps XPath-based
input selectors into ontology terms (which can be recorded in the ontology or in the fuselet
specification as a nonfunctional attribute), and a second stage that performs ontology-aware
reasoning.

4.2.3 Casting the if-then clauses into OWL-S
The above logic specification can be recast into OWL-S in several ways; one approach is to treat
subscribe and publish operations as preconditions and effects, and set the inputs and outputs to
be the maximal covering of the publish and subscribe topics.

In particular, the OWL-S service profile supports specification of process capabilities roughly of
the form:

process(parameters) {
 if precondition then
 take inputs ;
 foreach (result) {
 if inCondition then { hasEffects ; withOutputs }
}

where the inputs and outputs represent information-gathering, and preconditions and effects
represent stateful world-altering events. The conditions and effects can be represented in a
notation such as SWRL, an extension of RuleML -- which is basically Horn logic or if-then
statements – with OWL binary and unary predicates.

OWL-S has a slight weakness in that it does not have a concept of "withInputs"; in other words,
it assumes a constant set of inputs are always used for different results and their conditions and
effects. OWL-S also partitions the preconditions and effects for each result into separate XML
sections, which precludes the uniform use of SWRL to express the simple if-then statements.
The former is addressed by restricting the above general form of the OWL-S service profile to:

process(parameters) {
 foreach (result) {
 if inCondition then { hasEffects ; withOutputs }
 }
}

For a fuselet specification, there is one OWL-S result for each publish if-then clause, where the
"IF" subscribe terms form the "inCondition", and the left-hand side publish terms form the
"hasEffects".

To accommodate SWRL restrictions, each of the publish if-then clauses is internally represented
using binary predicates and unary class/data-range predicates, yielding the following in OWL-S:

13

Parameter: Z is_of_type String
Input: X is_of_type topicIn1
Input: Y is_of_type topicIn2
Output: T1 is_of_type topicOut1
hasResult {
 incondition {
 selectorIn1(X) AND selectorIn2(Y)
 }
 hasEffect {
 selectorOut1(T1) AND transformOut1(T1, [X,Y,Z])
 }
}
hasResult ... // for each publish if-then clause

where:

topics are subclasses of JBIInfoObject, and
selectors are classes arranged in a hierarchy.

4.3 Alternatives

4.3.1 Using SWRL or PDDL to capture needs
To address the second drawback mentioned above concerning the fragmentation of the succinct
Horn clauses into separate preconditions/effects in OWL-S, one could bypass the OWL-S service
profile entirely and express the Horn clauses directly in SWRL. A further step would be to use
an XML version of a planning notation such as the Planning Domain Definition Language
(PDDL) for STRIPS-like classical planning (or DRS which is an XML-based equivalent), which
would adequately capture each fuselet publish-behavior as a parameterized operator with
preconditions (subscribes) and effects (publications). However, to keep in line with emerging
standards, OWL-S will be used, although it is a bit bulky.

4.3.2 Guards
Along the lines of Concurrent Prolog or Guarded Horn Clauses, one could add guards to the
fuselet specification, of the form:

publish(topic, selector, transform(X,Y,Z))
 Guard: IF subscribe(topic1, selector1(X))
 AND subscribe(topic2, selector2(Y))

The interpretation of such a guard in concurrent logic languages is that it specifies a constraint to
be satisfied before committing to that choice of the if-then clause (so-called committed choice
nondeterminism used in evaluating concurrent logic languages). In this case one should interpret
such a guard as a condition under which outputs would be produced given that the appropriate
inputs were received.

14

Such a specification closely mirrors a very simple high-level specification of atomic fuselet
actions of the form:

Input: info-object type
Input predicate: XPath expression
Output: info-object type
Operator: transforms outputs from inputs
Condition: condition on inputs for outputs to fire

Guards thus might permit direct generation of fuselet code from the specification for simple
fuselets. OWL-S and SWRL can easily express such guards as an additional conjunctive in the
precondition. In the initial prototype demonstration guards were omitted, with the recognition
that semantic web service specifications can accommodate them.

4.4 Metrics and Ontology Derivation
To eventually enable the full cycle of autonomic fuselet execution, one must be able to perform
both metric-based fuselet assessment as well as web service composition in response to
assessment. For the former, metrics that map XPath-based selectors to ontology terms must be
encoded in the fuselet specification. For practical derivation of fuselet specifications, one also
might consider how to automatically infer ontology subtyping of terms from their XPath
selectors.

Both metric-based assessment and automatic inference of ontology subtyping from XPath
selectors is beyond the scope of the research effort. The focus of the current research effort is on
specification and web service composition, which is an enabling step for the larger problem of
autonomic execution; metric-based assessment as well as automatic selector ontology derivation
is left for future research.

4.5 Example Specification
An example of how a simple fuselet specification would appear in OWL-S is provided in
Appendix A for the previously described tracker fuselet. Also provided is a sample ontology of
selector terms.

15

5. BPEL-Based Fuselet Business Logic

The goal of this task is to examine techniques for expressing fuselet business logic in the Web
Services Business Process Execution Language (BPEL), both at the level of individual fuselets
as well as for fuselet collections.

The approach taken for capturing individual fuselets as BPEL workflows has three distinguishing
features:

• Using Java snippets for manipulation functions.

• Encapsulating the JBI CAPI in BPEL.

• Providing a generic fuselet template mapping an input topic and selector through a
transform to an output topic and condition, with exposed control points for start, stop,
pause, and resume.

For capturing fuselet collections as BPEL workflows, used in workflow composition, the
technique:

• Expressed composition as concurrent invocations (flow construct).

• Used correlation sets to manage fuselet instances.

The motivation and techniques for expressing fuselets in BPEL are described in detail below.

5.1 BPEL for Capturing Fuselet Business Logic.

5.1.1 What is BPEL
The convergence of workflow specifications into the Web Services Business Process Execution
Language (BPEL) and the concomitant emerging workflow technologies including those of
Oracle, IBM, and Active Endpoints, have made real the practical and standards-based use of
workflow orchestration of XML-based web services. At its heart, BPEL provides high-level
parallel-programming constructs for coordinating groups of potentially long-lived stateful web
service sessions, using correlation sets based on message content to route to specific stateful web
service instances. A BPEL specification of a workflow consists of three parts:

• Web Services Definition Language (WSDL) specifying the interfaces, including
additional specifications for partner links that map roles to WSDL operations.

• BPEL source code, which consists of an XML-based language that presents a message-
passing calculus for the process model, and includes constructs for:

o Partner Links: map roles to WSDL operations

o Correlation Sets: which fields identify stateful web service instances

o Variables and properties

o Atomic operations (receive, reply, invoke, assign)

16

o Flow constructs: concurrency with Petri-net-like synchronization

o Fault Handling

o Compensation Handling (rollback)

• Java extensions (snippets) for manipulation functions.

The BPEL workflow together with the manipulation functions yields what is termed the business
logic. The BPEL source code may be compiled and executed on any one of several vendor or
public-domain substrates. It bears noting, however, that most BPEL compiler implementations
inject or allow some proprietary and non-standard constructs, for example for Java snippets or
accessing BPEL variables from Java, which reduces portability.

5.1.2 Advantages of BPEL
The real potential power of the above workflow technologies lies not only in the underlying
BPEL foundation and its layering on widely-adopted web service standards, specifically WSDL
which provides for type-neutral synchronous and asynchronous (callback-based) process
interaction, but also in the higher-level capabilities built on top of it for business process
modeling including task lists and human-in-the-loop interaction nodes, visual process design,
and dashboard-based workflow monitoring and management. The ease and power of BPEL
technologies for tying together web services to form new services and their implicit support for
web service instance management and callbacks, as well as the possible interfacing with BPEL-
based designers for composing workflows, make them potentially ideal candidates for
application to orchestrating collections of information transformation services, both at the level
of a runtime environment for the transformations as well as for building and organizing them.

In particular, BPEL is potentially well suited for fuselet development: its process model supports
web service instance management and so allows getting handles to running fuselets, visual
editors provide for flow control and XPath-based field selection, and runtime engines can
support dashboard-based visual monitoring and control. Explorations to date lead to a belief that
a BPEL engine might be extremely attractive in building a fuselet runtime environment: tailored
user-interfaces can readily be built (e.g., using Java Server Pages) for process monitoring and
management. Moreover, the tasklist-based workflow capabilities of BPEL, replete with task
nodes for human interaction (e.g., approval using fill-in forms) are very advantageous, and
would be ideal in modeling the IMS-staff notification of fuselet demands and the spawning and
control of fuselets. The above capabilities, in particular the BPEL capabilities for human
workflow interaction and detailed process monitoring and control (which will be largely
untapped as they are beyond the scope of this effort), make a BPEL-based fuselet runtime
environment worth consideration. It also might be feasible to integrate the semantics-based
demand-driven fuselet inference capabilities being developing as part of this research effort into
a Visual BPEL Designer Eclipse plug-in, as well as tie them into IMS notification so they can
approve fuselets required to run under backwards chaining.

17

5.1.3 Candidate Technologies
Two principal implementations were considered as viable candidates to implement the BPEL
demonstrations. The first was the ActiveBPEL engine, an open source BPEL engine from
Active Endpoints, but whose associated visual process designer and runtime dashboards were at
that time proprietary. Another candidate was the then newly released Oracle BPEL Process
Manager for JBoss and the Oracle BPEL Process Designer plug-in for Eclipse. The licensing
rights for Oracle’s BPEL are currently limited to single prototype application, which is
acceptable for the scope of this effort and attractive as it aids experimentation with a visual
editor, as long as compatibility of the BPEL demonstration code with ActiveBPEL is maximized.
However, it bears noting that Oracle is leading an Eclipse project for a BPEL Process Designer
that would be based on Oracle's BPEL Designer – this was announced at the end of the Java One
2005 conference – so in the near future a comparable fully public-domain BPEL process
designer will become available.

5.2 Expressing Individual Fuselets in BPEL
Expressing an individual fuselet in BPEL consists of three steps: (1) capturing the fuselet
instance API in WSDL (with start, stop, pause, and resume methods), (2) coding the process
flow of the fuselet in BPEL (that is, its flow logic and use of CAPI publish-subscribe services),
and (3) coding the manipulation functions in Java extensions or individual web services. The
process flow using BPEL constructs together with the business logic comprises the fuselet
executable workflow.

There are two key problem areas in coding fuselets at the BPEL level: in the areas of callbacks
from the CAPI publish-subscribe when using it as a web service, and in the area of how to code
the manipulation functions. the use of a visual process designer as well the capabilities of
various BPEL engines and monitors is also worth to exploring.

In particular, as is described below in more detail, in order to effectively use the CAPI as a web
service including callbacks for subscribe operations, a prerequisite was to first wrap the Java
CAPI as a BPEL web services process for use with fuselets. This task in turn required
developing a partner-link enabled WSDL as well as a BPEL implementation for the publish-
subscribe CAPI.

Coding of fuselets in BPEL under Oracle’s BPEL Process Manager is briefly described below.
This task involved two steps. The first step is to wrap the Java CAPI as a BPEL web services
process for use with the fuselets: specifically a set of abbreviated publish-subscribe interfaces
within a single WSDL to support callbacks, and implemented the process as a BPEL workflow
with Java snippets to cut through to the CAPI invocations was designed. The second step was to
design and implement fuselets using the Eclipse-based BPEL Visual Process Designer, using
Java snippets to encode the business logic manipulation functions while keeping the CAPI
invocations at the level of BPEL partner-link invocations.

18

5.2.1 Representing the JBI CAPI as a BPEL workflow
As mentioned above, there are two key problem areas in coding fuselets at the BPEL level. First,
callbacks are an issue when using the CAPI as a web service. (A second problem area, discussed
in the next section, is how to code the manipulation functions.) In the area of callbacks, the
CAPI and its web service endpoints when exposed as stateless services via J2EE are insufficient.
One alternative solution is to use polling which is in the JBI CAPI. A second solution is to
provide a blocking subscribe method, either through an augmented API or as a BPEL extension
(i.e., Java snippet). A third solution is to code a BPEL extension that essentially provides the
callback capability.

A fourth and more attractive alternative is to slightly reengineer the CAPI implementation and
expose it as a BPEL service, so as to take advantage of BPEL capabilities for bi-directional
conversations, including callbacks. Callbacks are fully supported in WSDL through one-way
invocations, and are very succinctly captured in BPEL using EventHandlers or iterative invoke-
receive pairs. As an alternative to techniques mentioned above, the CAPI is wrapped as a BPEL
process to create the needed WSDL endpoints. This also places the CAPI within the sphere of
BPEL monitoring, e.g., for resource usage.

Thus, the CAPI itself is exposed as a BPEL process, i.e., as a web service constructed in BPEL,
rather than accessed through Java snippets or exposed as a web service for example through
J2EE or the Web Service Invocation Framework (WSIF). To wrap the Java CAPI as a BPEL
web services process for use with fuselets, a set of abbreviated publish-subscribe interfaces is
defined in one WSDL to support callbacks, and the process is implemented as a BPEL workflow
with Java snippets to cut through to the CAPI invocations. In particular the CAPI
implementation in BPEL was coded using Oracle’s BPEL Visual Process Designer. The
advantages to the approach of exposing the CAPI as a BPEL process are that it enables the use of
callbacks within BPEL web services, that it enables BPEL monitoring of CAPI invocations, and
that it insulates the CAPI implementation from use by other fuselets within BPEL.

In particular, by insulating the CAPI as a BPEL process, the mechanics of its implementation
(including such details as starting the server) are insulated and in effect provide a plug-in module
capability. This plug-in capability allows one to explore using alterative CAPI implementations:
in this effort a lightweight in-house JBI CAPI implementation was used, while in the future one
might plug in the JBI CAPI reference implementation.

5.2.2 Representing the fuselet interface and implementation in WSDL and
BPEL

Expressing a fuselet as a workflow involves both capturing its interface using WSDL and its
executable logic using BPEL. The logic for individual fuselets can be expressed using BPEL
flow constructs together with Java snippets for manipulation function extensions; the former in
particular can invoke publish-subscribe operations in the JBI CAPI when exposed as an atomic
service. Correlation sets can be used to provide a stateful fuselet instance identifier as well as
sequential use of a single CAPI connection. Issues to be addressed include instrumenting the

19

fuselet with monitoring, callbacks, fuselet parameterization, and optimal ways to invoke the
CAPI when exposed as a BPEL process.

The fuselets use Java snippet extensions to perform the base manipulation functions. An
alternative is to embody the manipulation functions as separate web services that would enable
their use in the visual process designer with a modified Eclipse plug-in that provides a palette of
manipulation functions and ontology-based selection. However, in the area of manipulation
functions, Java snippets (i.e., BPEL extensions) are very easy to code and are integrated into the
Eclipse BPEL designer. They are also significantly faster than making the manipulation function
a web service, and are more readable, although the latter as well as using the Web Services
Invocation Framework (WSIF) are still viable alternatives.

An advantage of expressing fuselet business logic in BPEL is the ability to exploit commercial,
off-the-shelf BPEL visual process editors and monitors. Using BPEL is also in line with the
fundamental approach of modeling fuselets as web services, critical to interoperability as well as
leveraging evolving distributed process management and workflow technologies built on web
services.

5.3 Expressing Fuselet Collections in BPEL
For capturing fuselet collections as BPEL workflows, specifically in the synthesized outputs
from workflow composition, the basic technique is to express composition as concurrent
invocations, i.e., a BPEL flow construct, and to use correlation sets to manage fuselet instances.
Reducing fuselet collections to concurrent execution is not surprising given that fuselet
interaction is essentially through a shared memory model, to wit, publish-subscribe. However,
the above approach does not preclude the use of more advanced BPEL features to capture fuselet
collections if so desired.

5.4 Demonstration of Fuselet Workflows in BPEL
To validate the above design of fuselets as BPEL processes, a concrete example of a generic
fuselet in BPEL was developed that can be parameterized for tracking and threat prediction
fuselets as well as a sensor publisher client. The BPEL and WSDL for the generic fuselet, as
well as the BPEL and WSDL for the publish-subscribe CAPI implementation, were developed
and run on the Oracle BPEL Process Manager platform.

In particular the example BPEL fuselet is a generic fuselet template that is parameterized to
optionally subscribe to a topic (i.e., JBI information object type) with a selector predicate, to
perform one of several transformations, and to optionally output the result to a topic subject to an
outputCondition constraint. (The outputCondition was not implemented in the prototype.) The
only domain-specific coding is in the Java snippet for the transformation that, based on the
parameterization, executes one of several transforms, either through an inline switch statement or
possibly using a set of transform services. The same template can thus operate as a sensor
generator (no input), a transform (with input and output), or potentially a subscriber client (no
output). The generic fuselet template thus allows one to chain together information transforms:
in this case a chain is formed which pipes the sensor outputs to the tracking fuselet and from

20

there to the threat fuselet. The below screenshot illustrates how the generic fuselet can be
instantiated using the parameterizations to perform a given transform. The sphere parameter is
intended to represent a Community-of-Interest.

Figure 2. Instantiation of the Generic Fuselet Template

The fuselet WSDL is also of a generic form that includes methods to start, stop, pause, and
resume the fuselet. The WSDL includes a BPEL partnerlink definition so that it is self-contained
within BPEL. The template implements the above methods quite simply as EventHandlers that
operate concurrently with the fuselet invocation. The power of BPEL as a concurrent
programming language is illustrated in the simplicity of expressing the above controlling
capabilities in a succinct and intuitive way. A similar template can be used by the workflow
composition engine to synthesize and piece together fuselet invocations.

The below screenshot from the Oracle BPEL Process Designer illustrates the partnerlinks and
methods exposed in the fuselet as well as the CAPI interfaces.

21

Figure 3. Fuselet Partnerlinks and Interfaces

Appendix A provides detailed examples of the CAPI and generic fuselet BPEL implementations.

22

6. Workflow Composition Engine

6.1 Overall Design
The objective of this portion of the research effort was to design and implement a workflow
composition engine that takes a set of ontology-based fuselet specifications and a goal (also a
fuselet specification), and synthesizes a BPEL workflow that invokes the fuselet BPEL
implementations to achieve the goal. In previous sections a fuselet specification that uses
Prolog-like Horn clause logic was described with ontology subtyping to express what a fuselet
does; sample BPEL workflows were also developed that provided executable models for how
the fuselet does it. In particular the latter evolved a generic BPEL template for fuselets that
optionally subscribe to events, perform one of several transformations, and then optionally
publish an output.

Given the above results, the design of the workflow composition engine is to (1) take the goal
and the extracted Prolog-like portions of the fuselet specification, (2) run a backwards-
chaining Prolog-like inference engine enhanced with ontology-subtyping for unification, and
(3) extract the process model from proof, specifically extract a set of dependent parameterized
fuselet invocations that are injected into a BPEL template for assembling fuselets.

6.2 Candidate Technologies
Key to implementing the above design is the choice of inference technology. In particular, the
inference engine should support:

• Java integration

• Backwards-chaining (Prolog-like inference)

• Procedural annotations (side-effects, for example that could extract fuselet invocations
from rule matching)

• Ontology subtyping

There are a number of inference technologies in the public domain. Jess (Java Expert System
Shell) is one exception that is widely used but is not fully public domain, and does not
explicitly support procedural annotations nor handle ontologies. Drools is a very nice object-
oriented forward-chaining system that allows rules to be expressed in Java or Groovy, and is
to be absorbed by the JBoss project; however, it does not support backwards-chaining. The
Jena Semantic Web Toolkit has a pluggable inference engine, the default implementation of
which is based on Declarative Logic (which includes notions of properties and subtyping), but
its rules are also expressed in that logic. SweetRules (Semantic Web-Enabling Technology) is
a translator from SWRL/RuleML onto various substrates including Jess and Jena. Mandarax
is a Java library for building rules for backward-chaining including procedural annotations.
Prova is a layer on top of Mandarax for a Prolog-like syntax for rules that also supports Java
procedural annotations.

23

None of the above technologies directly support unification with ontology subtyping, that is,
where a term publish(S(x)) matches publish(T(x)) if S is a subtype of T, although SWRL and
SweetRules can indirectly express this using OWL predicates. Ontology subtyping is needed
either directly or indirectly in workflow composition, for example, because if one fuselet
publishes an information object with a type or selector that is more refined than that needed by
the subscriptions of another fuselet, then in a demand-driven situation it is a viable candidate
to be spawned off to supply the required information.

There are at least three ways to support unification with ontology subtyping. First, one can
modify the unification algorithm: in Mandarax this is reasonably possible to do, and would
also involve calling down into Jena. An alternative and fairly commonly used technique is to
translate subtyping into explicit "is_a(S,T)" clauses in the rules. (This is also done in some of
the literature on workflow composition using BPEL and ontology subtyping.) If the latter
technique is chosen, the "is_a(S,T)" check involves invoking Jena to check if the subtyping
relation holds in the ontology. Alternatively, one could go a step further and avoid using Jena
entirely by translating the ontology subtyping relations into populated facts of above
"is_a(S,T)" form; or, if using an object-oriented rule system (such as Drools, albeit in a
forward fashion), by translating the ontology subtyping relations into object inheritance.
(Both of these approaches are fairly straightforward and have appeared in the literature.)

There are two viable implementation alternatives. The first is to use SweetRules with its Jena
translator: this is attractive because it uses RuleML (which is also the foundation of the
Semantic Web Rule Language (SWRL) draft W3C standard), but it is a bit difficult to express
the necessary procedural annotations. The second alternative is to use Mandarax/Prova and
either translate the ontology database into explicit subtyping facts, or better yet to translate the
fuselet specification rules into a form that use an "is_a(S,T)" relation that in turn cuts through
to Jena for determining subtyping relations from the ontology. The latter is both feasible and
attractive because Prova is highly integrated with Java, and the technique is easy to implement
and understand. In addition, if a technology like Janino is used for dynamically compiling
Java snippets (Janino is used by Drools), or alternatively a Java-based scripting language such
as Beanshell is employed, a prototype can be built that is totally scripted, easy to understand,
and requires no compilation. The latter was deemed a good approach for this research effort.

On the basis of the above analysis, Mandarax/Prova was selected for the Java-based
backwards-chaining inference technology. The implementation of the workflow composition
engine thus consists of (1) XSLT scripts to extract the fuselet specifications and introduce the
"is_a" relation in the rules for ontology subtyping, (2) the use of Mandarax/Prova for the
inference engine, and finally (3) a step to integrate the derived fuselet invocations into a BPEL
template.

6.3 Supporting Ontology-Based Subtyping in Inference
In order to incorporate ontology-based subtyping in inference, the original fuselet
specifications of the form:

publish (topic, selector, transform(X,Y)) :-

24

 subscribe (topic1, selector1, X), subscribe (topic2, selector2,
Y).

are translated, thus allowing unification across literal terms which are ontology subtypes, to a
form which incorporates an explicit "is_a" relation to capture ontology subtyping relations:

publish (topic, S, transform(X,Y)) :- is_a(selector, S),

 subscribe (topic1, selector1, X), subscribe (topic2, selector2,
Y).

which allows conventional unification, where only the uppercase variables will be unified.

In the first part of the above example the intended meaning is that, for the right-hand side term
“subscribe(…selector1…)”, if there is another rule whose head has a selector term that is a
refinement of "selector1" (where the selectors are predicates in publish-subscribe), then during
backwards chaining "publish(...selector1...)" should unify with that term1. The following is an
informal explanation of what such unification means. In the above rules (for which there may
be several per fuselet), the right-hand side represents subscriptions consumed by the fuselet,
and the left-hand side represents publications produced by the fuselet. In backward chaining,
or demand-driven search, the data items needed by a fuselet can be seen on the right-hand
side, and they are searching for another fuselet that would produce the required entries. If
another fuselet produces data that is more refined that what is needed (i.e., is a subtype), then
that is sufficient for the input; however, if the produced type is a mismatch or less refined then
it would not meet the subscription predicate.

Thus the backwards-chaining inference, or Prolog-style proof, from a goal of the form:

:- subscribe(topic3, selector3, X)

represents a search for a chain of fuselets that would produce the required information: the
workflow to realize the original goal then includes instantiation of all fuselets used in the
backwards-chaining proof. It also bears noting that typically there would need to be "facts" in
the rule database that let the proof successfully conclude its search; such facts are assertions of
the form:

publish(topic4, selector4, data)

that represent published data already assumed to exist, and thus for which no fuselets need to
be spawned to create it, or more generally a statement of what fuselets are already running.

Typically one might expect the predicates, or message selectors, to be expressed in a language
such as XPath. However, there is good reason for not directly using such a notation in the
logical relations captured above: comparing XPath expressions in order to determine
subtyping is somewhat complicated and often will yield trivially exclusive results. The above
approach separates the problem of deciding which fuselet inputs match other fuselet outputs
into two stages: a first stage that maps XPath-based input selectors into ontology terms

1 The publish and subscribe literals are allowed to unify though a ancillary rule that states: if publish() then
subscribe().

25

(further described in Section 2), and a second stage that uses those terms at a well-defined
logical level to reason about fuselet composition and needs satisfaction.

The implementation thus uses an OWL ontology of selector subtypes in reasoning about
predicate refinements. Prova, which is a nicely bundled package that runs out-of-the-box
when unzipped, includes Jade and almost all of the Jena Semantic Web Toolkit. A small Jena
wrapper class was written that provides an "is_a" relation based on ontology subtyping, and
this used in logic statements of the above form. The above form is a fairly standard way to
encode ontology-based subtyping in Prolog-like reasoning without altering the underlying
unification algorithm to use subtyping in term matching. Alternatively, instead of using
ontology-based subtyping via Jena one could use Prova's support for respecting Java class
inheritance when performing unification of variables which are Java objects, and encode the
subtyping relations in a Java class hierarchy.

6.4 Detailed Architecture
The architecture of the workflow composition engine, in greater detail, is illustrated below in
Figure 2.

Figure 4. Architecture of the Workflow Composition Engine

The workflow composition engine consists of three phases: (1) extracting the specifications
and goal into a Prolog-like form with explicit ontology-based subtyping, (2) running
Mandarx/Prova to infer the required fuselet invocations required to satisfy the goal, and (3)

Workflow
Composition Engine

BPEL Synthesis

Rule Extraction

Proof

Fuselet Goal

publish (topicc,
selectorc , X)

Fuselet Specifications
publish (topic, S, transform(X,Y)) :- is_a(selector, S),

subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

BPELBPEL

Instances

Fuselet

Prova Theorem ProverProva Theorem Prover

JenaJena

Selectors

Ontology

Workflow
Composition Engine
Workflow
Composition Engine

BPEL SynthesisBPEL Synthesis

Rule ExtractionRule Extraction

ProofProof

Fuselet Goal

publish (topicc,
selectorc , X)

Fuselet GoalFuselet Goal

publish (topicc,
selectorc , X)

Fuselet Specifications
publish (topic, S, transform(X,Y)) :- is_a(selector, S),

subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

Fuselet Specifications
publish (topic, S, transform(X,Y)) :- is_a(selector, S),

subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

BPELBPELBPELBPELBPELBPEL

Instances

Fuselet

Instances

Fuselet

Prova Theorem ProverProva Theorem Prover

JenaJena

Selectors

Ontology

Prova Theorem ProverProva Theorem Prover

JenaJena

Prova Theorem ProverProva Theorem ProverProva Theorem ProverProva Theorem Prover

JenaJenaJenaJena

Selectors

Ontology

Selectors

Ontology

Selectors

Ontology

26

synthesizing the BPEL invocations, in particular embedding them in a generic BPEL template
for assembling fuselets. In Figure 4, for purposes of illustration the specification in the upper
right is shown with the "is_a" relation already introduced; however in actuality this is
introduced in the rule extraction stage.

The implementation is coordinated by a Java controller class which performs the above stages.
The software implementation, in addition to the Jena wrapper mentioned previously, provides
a small Java wrapper class to call Prova using its Java interface. The implementation invokes
Prova through this wrapper to perform the reasoning involved in workflow composition.

6.5 Metrics and Feedback Mechanisms for Assessment and Reengineering
The following discussion briefly examines how metrics and feedback mechanisms could be
expressed and implemented respectively for guiding the re-engineering of fuselet workflow
models to enable continuous fuselet improvement and maximize the value of information
produced by fuselets.

Within the ontology-based framework, metrics would map XPath-selectors characterizing
published results to their equivalent ontology terms in the specification. Such metrics might
be captured within the OWL-S fuselet specification as a Quality-of-Service (QOS) section of
the service profile, in the form of a map from sets of XPath selectors to ontology terms for a
given fuselet. For example, a metric that maps track selectors might appear as:

 <Metric>
 <MapEntry>
 <key>//metadata[type=’track’][sensorRadius<’3’]</key>
 <value>RefinedTrackSelector</value>
 </MapEntry>
 <MapEntry>
 <key>//metadata[type=’track’]</key>
 <value>TrackSelector</value>
 </MapEntry>
 </Metric>

Figure 5. Metric Mapping XPath Selectors to Ontology Terms

Such metrics can then be used to incorporate feedback mechanisms into re-engineering the
workflow orchestration to optimize needs satisfaction, by: (1) injecting sensors into the BPEL
execution substrate to monitor the fuselet outputs, perhaps through BPEL aspect-oriented
instrumentation, (2) running an assessment agent or analyzer which takes the monitored
outputs, maps them into ontology terms using the metrics in the service profile, and then
compares the ontology terms with the expected selectors in the fuselet production rules, (3)
running a workflow composition agent or planner that, upon event notifications from the
assessment agent, re-engineers a fuselet workflow to provide an alternative implementation,
and (4) running an execution agent to implement the changed plans.

27

Figure 3 illustrates how workflow composition fits into the above larger feedback mechanism
loop. In addition there might be an additional controller agent to manage the lifecycle and
connections of the above sensors, analyzer, planner, and executor.

Figure 6. Autonomic Fuselet Assessment and Re-Engineering

The re-engineering, or planning step described above basically entails either choosing among
alternatives in the proof path or altering the underlying facts or rules. Re-planning can be
accomplished in several ways: by remembering the exact proof or derivation of the fuselet
associated with a given output performance and then searching for an alternative proof; by
altering the metrics themselves or the fuselet predicates; or by re-examining the composition
problem with a different set of admissible fuselets which are perhaps prioritized according to
some expected QOS. The above alternative search mechanisms minimally require slightly
modifying the composition engine so that it avoids or prefers certain search paths: this could
be accomplished for example by either re-synthesizing the rules to reflect past results using
cut operators, by tailoring the underlying Mandarax engine, or preferably by running Prova in
exhaustive mode (rather than "solve" mode) which yields all possible proof derivations, and
managing them explicitly. Sophisticated techniques for re-planning might also be
incorporated using HTN planners, as is mentioned in the conclusions.

6.6 Example of Workflow Composition
An example of workflow composition is provided in Appendix A.

Workflow
Composition

Managed Web Services

Open Grid Service Architecture

Sensor Effector

Knowledge Base

Business Logic
Production

Autonomic Fuselet Runtime

OWL-S Service Specification

BPEL Snippets

Plan

Monitor

Analyze

Execute

• Grounding (WSDL)

• Process Model
Business Logic Extensions

Transform functions
Message selectors

Service Ontology

Manipulation Library

• Service Profile

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)Workflow

Composition

Managed Web Services

Open Grid Service Architecture

Sensor Effector

Knowledge Base

Business Logic
Production

Autonomic Fuselet Runtime

OWL-S Service Specification

BPEL Snippets

Plan

Monitor

Analyze

Execute

• Grounding (WSDL)

• Process Model
Business Logic Extensions

Transform functions
Message selectors

Service Ontology

Manipulation Library

Workflow
Composition

Managed Web Services

Open Grid Service Architecture

Sensor Effector

Knowledge Base

Business Logic
Production

Autonomic Fuselet Runtime

OWL-S Service Specification

BPEL Snippets

Plan

Monitor

Analyze

Execute

• Grounding (WSDL)

• Process Model
Business Logic Extensions

Transform functions
Message selectors
Transform functions
Message selectors

Service Ontology

Manipulation Library

• Service Profile

publish (topica, selectora, transforma(X,Y))
subscribe (topic1, selector1, X),
subscribe (topic2, selector2, Y)

28

Tracking and threat fuselets, as well as a sensor subscriber client, have their needs specified
using OWL-S and their executable business logic specified using BPEL.

Using workflow composition, a third fuselet is synthesized from a goal specified in OWL-S to
subscribe to a refined threat alert. The tracking and threat fuselets are initiated within the
workflow, but not a sensor publisher which is recognized from a set of instance facts as already
running. The composed fuselet thus acts as a workflow container for other fuselets; however, its
WSDL exposes the same interfaces as a fuselet, and it could additionally subscribe, perform a
transformation, and conditionally publish an output. It bears noting that the workflow
composition engine in its prototype form does not generate the OWL-S specification for the
composed fuselet workflow: however, this is a relatively straightforward extension.

29

7. Conclusions

In this research effort a proof-of-concept demonstration of autonomic fuselet business logic
development was developed that uses semantic web services and workflow technologies to
specify fuselet information needs, to define an executable workflow model for its business logic,
and to perform workflow composition from a goal and specifications to executable model in a
manner that enables feedback mechanisms that can assess behavior and then reengineer the
process model to satisfy needs.

First, an ontology-based fuselet specification in a variant of the Web Ontology Language for
Services (OWL-S) was defined. Then the technical feasibility of capturing fuselet business logic
using the Business Process Execution Language (BPEL) was examined, in particular the
suitability of BPEL for controlling fuselets as well as interacting with the publish-subscribe API
(CAPI). Lastly, a workflow composition engine for deriving a BPEL process model from a goal
and a set of fuselet specifications was designed and implemented. Also examined were how
metrics and feedback mechanisms could be used to enable assessment and re-engineering.

A fundamental observation that underlies this approach is that it may be possible to increase the
robustness of general techniques in semantic web services and workflow composition by
restricting the domain of discourse to the fundamental characteristics of fuselets, i.e., that they
interact through publish, subscribe, and query operations. An otherwise general OWL-S
specification is thus restricted to a simple Horn-clause logic formulation whose terms are
publish-subscribe operations, and this formulation is leveraged in workflow composition by
using Prolog-based theorem proving enhanced with ontology subtyping.

7.1 Lessons Learned
For specifying fuselet information needs, ontology-based Prolog-like logic statements are a
succinct means of capturing fuselet inputs and outputs as well as their logical relation in a
manner that is amenable to inference. Additionally, in can be concluded that OWL-S is well-
suited for capturing ontology-based fuselet specification. Evolving RuleML and SWRL
standards are highly expressive, and the service profile and process model provide a clean
separation of concerns. Moreover, as is discussed below, the use of OWL-S enables the
expression of more sophisticated fuselet behaviors, as well as the integration of those
specifications into sophisticated Hierarchical Task Network planners.

In the area of fuselet business logic, BPEL is one viable medium for capturing fuselet
executables, both at the level of individual fuselets as well as for fuselet collections. BPEL
provides a rich asynchronous programming model, which when coupled with a powerful visual
process designer (such as the BPEL visual designer Eclipse project) has the potential to provide a
fuselet Interactive Development Environment. One drawback of BPEL, in comparison for
example to the XML Process Definition Language (XPDL), is in its lack of support for directly
invoking other BPEL processes as subflows rather than as encapsulated web services. However,
this shortcoming is addressed in proposals by IBM and others for sub-process extensions in
BPEL-SPE.

30

For workflow composition, a simple specification based on Horn clause logic has the advantage
of being amenable to reasoning using conventional theorem provers and rule engines. In
particular, Prova/Mandarax is an excellent and easy-to-use backwards-chaining rule inference
system that provides Java integration and bundled support for the Jena Semantic Web toolkit.
However, more sophisticated specifications or planning techniques entail the use of
concomitantly more sophisticated semantic rule engines and AI planners.

7.2 Recommendations for Future Work
A key result of this research effort is the identification of techniques and technologies that can be
used for semantics-based fuselet specification and workflow composition

While a simple fuselet specification using Horn-clause logic with ontology subtyping appears to
be a good match for capturing fuselet behavior, and increases the robustness of planning
whatever the technology, one should not preclude the expression of more complex behaviors
using a fuller set of the SWRL rule language as well as the use of more features of OWL such as
properties and restrictions. The expression of more sophisticated behavior in SWRL in turn may
require declarative logic (DL) reasoners such as the SweetRules translator or Pellet.

In addition, while the planning used in the workflow composition implementation is
straightforward, more sophisticated planning techniques may require the use of Hierarchical
Task Planners (HTN) such as JSHOP2. In particular JSHOP2 includes an OWL-S API for
interfacing with and performing planning using OWL-S specifications, which is made practical
by the fact that OWL-S is at heart based on HTN planning concepts.

As a next step it is recommended that:

(a) OWL-S be used for fuselet specification, which supports the above Horn clause formulation
(which is initially recommended and potentially increases the robustness of planning whatever
the technology) as well as more complex specifications if needed,

(b) the JSHOP2 HTN planner be used for implementing workflow composition, in order to
leverage and track COTS planning technology. This also supports more general OWL-S
specifications as needed.

In the larger arena, the above semantics-based demand-driven fuselet inference capabilities
should be integrated into fuselet development environments as well as into the fuselet runtime to
provide advanced semantics-based fuselet authoring and autonomic runtime management
capabilities. Specifically, the capabilities for ontology-based fuselet specification and
composition can be integrated into a Visual BPEL Designer Eclipse plug-in, as well as be tied
into IMS notification so they can approve fuselets required to run under backwards chaining.

To enable the full cycle of autonomic fuselet execution, one must be able to perform both metric-
based fuselet assessment as well as perform web service composition in response to assessment.
For the former, the fuselet specification metrics that map XPath-based selectors to a hierarchy of
ontology terms need to be derived. From a practical perspective, the semi-automatic derivation
of ontology subtyping of terms from their XPath selectors might be examined. For the latter, the

31

enhancement of the runtime to incorporate both assessment as well as planning is key to
realizing the larger goal of autonomic execution.

32

References

Joint Battlespace Infosphere (JBI)

[CAPI[JBI Publish-Subscribe Common API (CAPI). http://www.infospherics.org

[Fuselets] Fuselet Definition Documents. http://www.fuselet.org

[JBI] AFRL JBI Program. http://www.if.afrl.af.mil/tech/programs/jbi/

[USAF99] "United State Air Force Scientific Advisory Board Report on Building the Joint
Battlespace Infosphere, Volume 1: Summary", SAB-TR-99-02 December 17, 1999.
http://www.sab.hq.af.mil/Archives/1999/JBI/JBIVolume1.pdf

OWL-S Documentation

[OWL-S] OWL-S: Semantic Markup for Web Services, W3C Member Submission, 22 November
2004. http://www.w3.org/Submission/OWL-S

[SWRL] SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member
Submission, 21 May 2004. http://www.w3.org/Submission/SWRL/

BPEL Documentation

[BPELSource] "BPEL Resource Guide".
http://www.bpelsource.com/

[BPELSpec] "OASIS Web Services Business Process Execution Language (WSBPEL)".
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel

[BPEL11] "Business Process Execution Language for Web Services Version 1.1".
http://www.ibm.com/developerworks/library/specification/ws-bpel/

Visual BPEL Designers

[BpelEclipse] Eclipse BPEL Designer Editor. http://www.eclipse.org/bpel

[BpelTutorial] Oracle BPEL Quick Start Tutorial - Eclipse.
http://www.oracle.com/technology/products/ias/bpel/pdf/orabpel-QuickStart.pdf

BPEL Implementations

[ActiveBPEL] ActiveBPEL Engine - Open Source BPEL Server. http://www.activebpel.org/

[Oracle] Oracle BPEL Process Manager. http://www.oracle.com/appserver/bpel_home.html

Prova and Jena

[Jena] Jena Semantic Web Framework. http://www.hpl.hp.com/semweb/jena.htm

[Prova] Prova Language for Rule Based Java Scripting. http://www.prova.ws

33

Web Services Composition

[ACC04] “An algorithm for Web service discovery through their composition”, Lerina Aversano,
Gerardo Canfora, and Anna Ciampi, Proc International Conference on Web Services 2004
(ICWS 2004).
http://conferences.computer.org/icws/2004/
http://csdl.computer.org/comp/proceedings/icws/2004/2167/00/2167toc.htm

[CSD+03] "Business-oriented management of Web services", Fabio Casati, Eric Shan, Umeshwar
Dayal, and Ming-Chien Shan, Communications of the ACM, Volume 46 , Issue 10
(October 2003). http://maximus.uvt.nl/sigsoc/pub/Papazoglou%20-
%20Georgakopoulos%20-%20Service-oriented%20computing.pdf

[MWG04] “Automated Web Service Composition using Semantic Web Technologies”, Shalil
Majithia, David W.Walker, and W.A.Gray, Proc. International Conference on Autonomic
Computing (ICAC'04).
http://csdl.computer.org/comp/proceedings/icac/2004/2114/00/2114toc.htm

[OWL-S] "Bringing Semantics to Web Services: The OWL-S Approach", David Martin, Massimo
Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott, Deborah McGuinness, Bijan
Parsia, Terry Payne, Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara,
Proceedings of the First International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), July 6-9, 2004, San Diego, California, USA.
www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc

[RKM04] “Logic-based Web Services Composition: from Service Description to Process Model”,
Jinghai Rao, Peep Kungas, and Mihhail Matskin, Proc. International Conference on Web
Services 2004 (ICWS 2004).
http://conferences.computer.org/icws/2004/

34

Symbols, Abbreviations, and Acronyms

BPEL...................................Business Process Execution Language
CAPICommon API for Publish-Subscribe (JBI)
COTSCommercial Off-The-Shelf
DLDeclarative Logic
JBIJoint Battlespace Infosphere
KIFKnowledge Interchange Format
OWLOntology Web Language
OWL-S................................Ontology Web Language for Services
QOS.....................................Quality of Service
RDF.....................................Resource Description Format
RDF-SResource Description Format Schema
RuleML...............................Rule Markup Language
SOAPSimple Object Access Protocol
SWRLSemantic Web Rule Language
UDDI...................................Universal Description, Discovery, and Integration
WSDLWeb Service Description Language
XML....................................Extensible Markup Language
XPDLXML Process Definition Language

35

Appendix A. Demonstration Script.

A.1 Overview
A fuselet may be defined as a form of information transformation that communicates with the
world using only publish-subscribe operations, for example as encapsulated in the Joint
Battlespace Infosphere (JBI) Common Application Programming Interface (CAPI) for
publish-subscribe. This document presents step-by-step instructions on how to display and
run examples that demonstrate:

(1) The specification of fuselet information needs using the Web Ontology Language for
Services (OWL-S).

(2) The definition of fuselet business logic using the Business Process Execution Language
(BPEL), and its execution as a web service.

(3) The automatic composition of fuselets from other fuselets using a workflow composition
engine that derives a BPEL process model from a fuselet goal and other fuselet
specifications using theorem-proving.

In the following sections the demonstration scenario and objectives as well as the capabilities
to be demonstrated are described. Lastly the demonstration programs themselves are listed.

A.2 Objective
The objective of these demonstrations is to show capabilities for autonomic fuselet business
logic development through the use of semantic web services and workflow technologies to:

• Specify fuselet information needs,

• Define an executable workflow model for its business logic, and

• Perform workflow composition from a goal and specifications to executable model in a
manner that enables feedback mechanisms that can assess and adapt the process model
to satisfy needs.

Details on each of these objectives are provided below.

A.2.1 Ontology-Based Fuselet Specification
The objective of the first part of the demonstration is to show how the information needs of a
fuselet can be defined through an ontology-based fuselet logic specification expressed in a
variant of the Web Ontology Language for Semantic Web Services (OWL-S). Concrete fuselet
examples are provided which use the OWL-S service profile to capture a Horn Clause (Prolog-
like) logic specification with basic manipulation terms and message-selector types taken from
an ontology. For each fuselet, its specification consists of a set of if-then statements of the
form:

36

 publish (topic, selector, transform(X,Y)) IF
 subscribe (topic1, selector1, X) AND subscribe (topic2, selector2, Y).

 where
 topic: is the JBI info-object type
 selector: is the JBI selector predicate, where term matching uses
 ontology subtyping
 transform: transformation, where term matching may optionally use
 ontology subtyping
 X,Y: are logical variables

In order to incorporate ontology-based subtyping in inference, these clauses are represented in
OWL-S using an explicit "is_a" relation to capture ontology subtyping relations:
 publish (topic, S, transform(X,Y)) IF is_a(selector, S) AND
 subscribe (topic1, selector1, X) AND subscribe (topic2, selector2, Y).

which allows unification across literal terms which are ontology subtypes.

The intended meaning of ontology-based selectors is that the demand for subscription can be
satisfied by another fuselet publishing a refined type. In the above rules (for which there may
be several per fuselet), the right-hand side represents subscriptions consumed by the fuselet,
and the left-hand side represents publications produced by the fuselet. In backward chaining,
or demand-driven search, the right-hand side shows the data items needed by a fuselet, and are
searching for another fuselet that would produce the required entries. If another fuselet
produces data that is more refined that what is needed (i.e., is a subtype), then that is sufficient
input; however, if the produced type is a mismatch or less refined then it might not meet the
subscription predicate.

The above logical formulae are encoded directly in the Semantic Web Rule Language
(SWRL) used by OWL-S for specifying Inputs/ Outputs/ Preconditions/ Effects. Such a
notation thus enhances fuselet metadata that might otherwise only specify inputs and outputs
by additionally providing preconditions and effects. In particular, the above representation of
fuselets only uses a small subset of the OWL-S and SWRL capabilities for expressing rules: in
the general case the conditions can be more sophisticated declarative logic rules to capture a
finer characterization of fuselet capabilities.

Such a specification can then be used both to:

• Assess whether the inputs and outputs of the executing fuselet business logic satisfy
the specified needs, and

• Perform automated fuselet composition using theorem provers or planners, with
inference mechanisms enhanced to use ontology-based subtyping.

The above notation has the advantage of separating the decision as to which fuselet inputs
match other fuselet outputs into two stages: a first stage that maps XPath-based input selectors
into ontology terms (which can be recorded in the ontology or in the fuselet specification as a

37

nonfunctional attribute), and a second stage that performs ontology-aware reasoning. The
separate stage that maps from predicates, e.g., XPath expressions, to selector terms could be
captured in the OWL-S service profile as quality-of-service metric.

In addition to using the OWL-S service profile to capture the information needs, the two other
pieces of OWL-S -- the process model to hold the business logic, and the grounding to hold
the mapping to WSDL -- are used. To enable workflow composition, the grounding is
included as part of the fuselet specification.

The demonstration provides:

(1) An example ontology of selector predicates (which could also hold manipulation
functions), and

(2) Example fuselet specifications in OWL-S for tracking and threat prediction fuselets, as
well as a sensor publisher client.

A.2.2 BPEL-Based Fuselet Business Logic
The second part of the demonstration shows how to map individual fuselets, as well as their
composition, into BPEL. A concrete example of a fuselet running on a COTS BPEL
execution platform is demonstrated.

Expressing a fuselet as a workflow involves both capturing its interface using WSDL and its
executable logic using BPEL. The logic for individual fuselets can be expressed using BPEL
flow constructs together with Java snippets for manipulation function extensions, where the
former can invoke publish-subscribe operations in the JBI CAPI when exposed as an atomic
service. Correlation sets can be used to provide a stateful fuselet instance identifier as well as
sequential use of a single CAPI connection. Issues that need to be addressed include
instrumenting the fuselet with monitoring, callbacks, fuselet parameterization, and optimal
ways to invoke the CAPI as a service endpoint.

In particular the CAPI itself is exposed as a BPEL process, i.e., as a web service constructed in
BPEL, rather than accessed through Java snippets or exposed as a web service for example
through the Web Service Invocation Framework (WSIF). The advantages to exposing the
CAPI in BPEL are that it allows the CAPI implementation to take advantage of BPEL
capabilities for bi-directional conversations, including enabling the use of callbacks within
BPEL web services, and that it enables BPEL monitoring of CAPI invocations (e.g., for
resource usage). In particular, callbacks are fully supported in WSDL through one-way
invocations, and are very succinctly captured in BPEL using EventHandlers or iterative
invoke-receive pairs. To wrap the Java CAPI in a BPEL web services process, an abbreviated
set of publish-subscribe interfaces is defined in one WSDL to support callbacks, and the
process is implemented as a BPEL workflow with Java snippets to cut through to the CAPI
invocations.

An advantage of expressing fuselet business logic in BPEL is the ability to exploit COTS
BPEL visual process editors and monitors. Using BPEL is also in line with the fundamental

38

approach of modeling fuselets as web services, critical to interoperability as well as leveraging
evolving distributed process management and workflow technologies built on web services.

The demonstration provides:

(1) A BPEL implementation of the CAPI, specifically WSDL and BPEL code for an
abbreviated set of CAPI publish-subscribe interfaces,

(2) A generic fuselet business logic definition in WSDL and BPEL that can be parameterized
for tracking and threat prediction fuselets as well as a sensor publisher client,

(3) Instructions to start the COTS BPEL server,

(4) Instructions to compile the example fuselet, and

(5) Instructions to execute a chain of instantiated fuselets.

In particular the example BPEL fuselet is a generic fuselet template that is parameterized to
optionally subscribe to a topic (i.e., JBI information object type) with a selector predicate, to
perform one of several transformations, and to optionally output the result to a topic if it
satisfies an output condition. The only domain-specific coding is in the Java snippet for the
transformation that, based on the parameterization, has a switch statement to execute one of
several transforms. (This inline coding can be generalized to instead use a transform factory,
or a transform web service, that allows arbitrary transforms.) The same template can thus
operate as a publisher generator (no input), a transform (with input and output), or potentially
a subscriber client (no output).

The fuselet WSDL is also of a generic form that includes methods to start, stop, pause, and
resume the fuselet. The WSDL includes a BPEL partnerlink definition so that it is self-
contained within BPEL. The template implements the above methods quite simply as
EventHandlers that operate concurrently with the fuselet invocation: the power of BPEL as a
concurrent programming language is illustrated in the simplicity of expressing the above
controlling capabilities in a succinct and intuitive way.

A similar template is used by the below composition engine to piece together synthesized
fuselet invocations.

A.2.3 Workflow Composition Engine
The third part of the demonstration shows the capability to automatically perform workflow
composition. The workflow composition engine composes fuselets from other fuselets by
deriving a BPEL process model from a fuselet goal and a set of fuselet specifications
expressed in OWL-S. In particular the demonstration shows the use of ontology-based
subtyping in inferring how the demand for a subscription can be satisfied by another fuselet
publishing a refined type.

The workflow composition engine is a Java package that leverages COTS technologies such
as the Prova/Mandarax inference engine and the Jena Semantic Web Toolkit to perform
ontology-aware theorem proving from the goal which as a side-effect extracts the process
model from the proof. Its inputs, outputs, and algorithm as are follows.

39

The inputs are:

• A fuselet goal in the form of an OWL-S specification.

• Existing fuselets specified in OWL-S.

• An OWL ontology containing a hierarchy of selector terms.

• A database of existing running fuselet instances, as Prova rules.

The composition engine uses ancillary files including:

• Supporting Prova rules, e.g., append.

• A BPEL composition template.

The composition engine outputs a BPEL workflow that invokes a fuselet web service for each
derived fuselet invocation, using the previously described parameterized generic fuselet BPEL
template. The synthesized workflow may then be compiled with Oracle BPEL (using "obant")
and subsequently run.

The algorithm to perform workflow composition from goal and specification to invocation set
roughly consists of three steps: extract rules, perform proof, and synthesize the BPEL
template. In more detail the algorithm is as follows:

• Extract the goals and specifications into Prova rules using XSLT.

• Form a combined rule set using the extracted goals, specifications, instance database,
and supporting rules.

• Run Prova on the rules to infer fuselet invocations.

• Generate BPEL fuselet invocations from the inference results.

• Insert the BPEL invocations into the template.

The package is structured as a set of independent Java source files for XSLT Transformation,
Jena invocation, and Prova invocation that may be used separately from workflow
composition.

The above technique for workflow composition is one prerequisite component for an
autonomic fuselet runtime, in that it is intended to be used in concert with feedback
mechanisms that compare the executed fuselet business logic outputs with metrics for the
specified needs, and then dynamically re-engineer the derived fuselet model using workflow
composition as needed to optimally satisfy the needs.

The demonstration provides:

(1) An example fuselet goal specified in OWL-S,

(2) A database of existing running fuselet instances, expressed as Prova rules,

(3) A script to execute the workflow composition engine to create the composed fuselet
process model from: the goal, the set of fuselet specifications in OWL-S for tracking and

40

threat prediction fuselets and sensor publisher client, and the instance database, given the
ontology of selector predicates,

(4) The resulting synthesized fuselet business logic,

(5) Instructions to compile the composed fuselet,

(6) Instructions on how to execute the composed fuselet as well as the sensor generator
client.

A.3 Scenario
The scenario of the demonstration is in the area of target tracking and threat evaluation,
specifically to create and run fuselets that use the JBI CAPI to publish and subscribe to sensor,
target tracking, and threat prediction events.

In the demonstration scenario, one JBI client publishes sensor returns, a Tracker fuselet
subscribes to and uses the sensor returns to update track locations, and another Threat fuselet
subscribes to and evaluates the updated tracks to publish threat alerts.

The two tracking and threat fuselets, as well as the sensor subscriber client, have their needs
specified using OWL-S and their executable business logic specified using BPEL.

Using workflow composition, a third fuselet is synthesized from a goal specified in OWL-S to
subscribe to a refined threat alert. The tracking and threat fuselets are initiated within the
workflow, but not a sensor publisher which is recognized from a set of instance facts as
already running. The composed fuselet thus acts as a workflow container for other fuselets;
however, its WSDL exposes the same interfaces as a fuselet, and it could additionally
subscribe, perform a transformation, and conditionally publish an output.

In particular the demonstration shows the use of ontology-based subtyping in inferring how
the demand for a subscription can be satisfied by another fuselet publishing a refined type.
The ontology subtyping occurs both in matching the goal subscription selector
("threatSelector") to the threat fuselet publication condition ("refinedThreatSelector"), and in
matching the threat fuselet's track subscription selector ("trackSelector") to the track fuselet
publication condition ("refinedTrackSelector"). The ontology subtyping is illustrated below in
the fuselet specifications, goal, and instances, the former which are extracted from the OWL-S
in readable form by the composition engine.

%---
% Extracted rules from specifications in readable form
%---

% Threat fuselet
%---------------
publish(threatTopic, "refinedThreatSelector", threat(X)) :-
 subscribe(trackTopic, "trackSelector", X).

% Tracker fuselet

41

%----------------
publish(trackTopic, "refinedTrackSelector", track(X)) :-
 subscribe(sensorTopic, "sensorSelector", X).
publish(trackTopic, "trackSelector", track2(X, Y)) :-
 subscribe(sensorTopic, "sensorSelector", X),
 subscribe(sensorTopic2, "sensorSelector2", Y).

% Sensor fuselet
%---------------
publish(sensorTopic, "sensorSelector", sensor(data)).

%-----
% Goal
%-----
:- subscribe(threatTopic, "threatSelector", X).

%------------------------------
% Facts about fuselet instances
%------------------------------
exists_fuselet(sensorFuselet, [exists, sensorFuselet,
 ["jbi", "none", "none", "sensor", "sensorTopic", "*"]).

Figure 7. Extracted Fuselet Specifications, Goal, and Instances in Readable Form.

The demonstration shows:

(1) Execution of the individual fuselets on a COTS BPEL engine,

(2) Workflow composition, and

(3) Execution of the composed fuselet.

While the above are simple notional programs, they demonstrate how fuselet information
needs can be specified using semantic web services, and its business logic specified using
workflow process models. Moreover, by suitably restricting the domain of discourse to
publish-subscribe events, workflow composition can be straightforwardly effected using
Prolog-like theorem proving. Such backwards-reasoning from requirements to fuselet
workflow can be used both dynamically to re-engineer fuselet compositions as well as
statically to guide development of workflows that satisfy information on demand.

A.4 Demonstration Programs

A.4.1 OWL-S-Based Fuselet Specification.
A.4.1.1 Service Ontology.

The OWL ontology for the example selector predicates is shown below.

42

<?xml version='1.0' encoding='ISO-8859-1'?>

<!--
#==
=
Copyright (C) 2005 Orielle, LLC.
#==
=
-->

<!--
#==
=
The OWL-S service profile references two other fuselet-specific ontologies:
ProfileHierarchy - holds general ontology for fuselet processes
SelectorHierarchy - holds ontology for selector predicates
and manipulation functions.
#==
=
-->

<!DOCTYPE uridef[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">

 <!ENTITY service "http://www.daml.org/services/owl-s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl">

 <!ENTITY DEFAULT "http://www.orielle.com/URI">
 <!ENTITY THIS "FuseletService.owl">
]>

<rdf:RDF
 xmlns:rdf = "&rdf;#"
 xmlns:rdfs = "&rdfs;#"
 xmlns:xsd = "&xsd;#"
 xmlns:owl = "&owl;#"

 xmlns:service = "&service;#"
 xmlns:profile = "&profile;#"
 xmlns:process = "&process;#"
 xmlns:grounding = "&grounding;#"

 xmlns = "&DEFAULT;#"
 xml:base = "&DEFAULT;"
 >

43

 <owl:Ontology rdf:about="">
 <owl:versionInfo> 3.0 </owl:versionInfo>
 <rdfs:comment>
 This is an ontology for Fuselet service hierarchy,
 and for selector hierarchy, both used for fuselet composition.
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&grounding;" />
 </owl:Ontology>

<!-- ### -->
<!-- # Fuselet class definitions -->
<!-- ### -->

 <owl:Class rdf:ID="Fuselet">
 <rdfs:subClassOf rdf:resource="&profile;#Profile" />
 <rdfs:comment>
 Class that represents all Fuselet services.
 </rdfs:comment>
 </owl:Class>

<!-- ### -->
<!-- # Selector & manipulation function hierarchy, and JBI InfoObject types
-->
<!-- ### -->

 <owl:Class rdf:ID="JBIInfoObject">
 </owl:Class>

 <owl:Class rdf:ID="JBISelector">
 </owl:Class>

 <owl:Class rdf:ID="sensorTopic">
 <rdfs:subClassOf rdf:resource="#JBIInfoObject"/>
 </owl:Class>

 <owl:Class rdf:ID="sensorTopic2">
 <rdfs:subClassOf rdf:resource="#JBIInfoObject"/>
 </owl:Class>

 <owl:Class rdf:ID="trackTopic">
 <rdfs:subClassOf rdf:resource="#JBIInfoObject"/>
 </owl:Class>

 <owl:Class rdf:ID="threatTopic">
 <rdfs:subClassOf rdf:resource="#JBIInfoObject"/>
 </owl:Class>

 <owl:Class rdf:ID="sensorSelector">
 <rdfs:subClassOf rdf:resource="#JBISelector"/>
 </owl:Class>

44

 <owl:Class rdf:ID="sensorSelector2">
 <rdfs:subClassOf rdf:resource="#JBISelector"/>
 </owl:Class>

 <owl:Class rdf:ID="trackSelector">
 <rdfs:subClassOf rdf:resource="#JBISelector"/>
 </owl:Class>

 <owl:Class rdf:ID="threatSelector">
 <rdfs:subClassOf rdf:resource="#JBISelector"/>
 </owl:Class>

 <owl:Class rdf:ID="refinedThreatSelector">
 <rdfs:subClassOf rdf:resource="#threatSelector"/>
 </owl:Class>

 <owl:Class rdf:ID="refinedTrackSelector">
 <rdfs:subClassOf rdf:resource="#trackSelector"/>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="track">
 <rdfs:domain rdf:resource="#JBIInfoObject"/>
 <rdfs:range rdf:resource="&rdf;#list"/>
 </owl:ObjectProperty>

</rdf:RDF>

Figure 8. Service Ontology with Selector Terms.

A.4.1.2 Tracker Fuselet Service Profile.

The OWL-S specification for a tracker fuselet is shown below. The OWL-S for the threat
prediction fuselet and sensor publisher client are similar and are omitted for brevity. The
tracking fuselet subscribes to sensor returns and publishes updated tracks, while the threat
prediction fuselet subscribes to tracks and publishes threat warnings. The OWL-S
specification illustrates the use of the Semantic Web Rule Language (SWRL) for expressing
the Input/Output/Precondition/Effects. The grounding is included in the metadata to facilitate
workflow composition.

<?xml version='1.0' encoding='ISO-8859-1'?>

<!--
Copyright (C) 2005 Orielle, LLC.
-->

<!--
#==
=
This document provides an OWL-S specification
for a tracker fuselet service.

45

Logic specification
===================
The tracker service has a Horn clause specification of:
tracker_fuselet(Z) {
publish(trackTopic, refinedTrackSelector, track(X,Z)))
IF subscribe(sensorTopic, sensorSelector, X)

publish(trackTopic, trackSelector, track2(X,Y,Z)))
IF subscribe(sensorTopic, sensorSelector, X)
AND subscribe(sensorTopic2, sensorSelector2, Y)
}
where uppercase words denote logical variables.

We slightly alter the parameterization to match the generic
BPEL fuselet template of <sphere, inTopic, inSelector, transform,
outTopic, outSelector>.

OWL-S Extensions:
We introduce a notion of default attribute for parameterization
for demand-driven fuselet instantiation.
We also add a "transform" attribute to indicate transform properties,
and add a "name" attribute to SimpleProcess.

OWL-S specification
===================
The OWL-S specification consists of a:
1. A service outline with links to the profile, process, and grounding.
2. A service profile with links to inputs/outputs/preconditions/effects
and parameters encoded in the process model.
The profile references two other fuselet-specific ontologies:
ProfileHierarchy - holds general ontology for fuselet processes
SelectorHierarchy - holds ontology for selector predicates
and manipulation functions.
The profile is a variant of OWL-S in that it allows "hasParameter",
which is typically used only within inputs & outputs.
This is to allow parameterized fuselets (and parameterized services).
3. A process model consisting of:
SimpleProcess for the fuselet abstraction.
CompositeProcess to hold the BPEL.
The composite process basically resolves to:
process(parameters) {
foreach (result) { if inCondition => hasEffects ; withOutputs }
}
4. A grounding from OWL service parameters to WSDL.
(A notional grounding is shown here. The WSDL is omitted.)

Rule specification
==================
Preconditions and effects are expressed using
RuleML (FOL) with SWRL extensions.
An alternative is to use RuleML, or SWRL native.
The RuleML conditions basically consist of a conjunction of atoms,

46

while SWRL restricts atoms to binary predicates and
unary class/data-range predicates.

RuleML version is similar to the if-then rules above.

Swrl version is:
publish(topic, Output) ^ class(Output, selectorOut)
^ transform(Output, Subscriptions)
^ swrlb:listConcat (Subscriptions, X, Y)
IF subscribe(topicIn1, X) ^ class(X, selectorIn1)
AND subscribe(topicIn2, X) ^ class(X, selectorIn2)

Service Profile
===============
We treat the subscribe and publish operations as preconditions and effects,
and set the inputs and ouputs to be the maximal covering of the
publish and subscribe topics.

Each of the "publish" clauses above is internally represented
in the service profile as:

Parameter: Z is_of_type String
Input: X is_of_type sensorTopic
Input: Y is_of_type sensorTopic2
Output: T is_of_type trackTopic
// for each publish if-then clause
hasResult {
incondition {
right-hand "if" side
}
hasEffect {
left-hand "then" side
}
}
hasResult ... // for each publish if-then clause

where: topics are subclasses of JBIInfoObject,
and selectors are classes arranged in a lattice
(or selectors could be made predicates).
#==
=
-->

<!DOCTYPE uridef[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">

 <!ENTITY swrlx "http://www.w3.org/2003/11/swrlx">
 <!ENTITY ruleml "http://www.w3.org/2003/11/ruleml">
 <!ENTITY owlx "http://www.w3.org/2003/05/owl-xml">
 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb">

47

 <!ENTITY expr "http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl">
 <!ENTITY swrl "http://www.w3.org/2003/11/swrl">
 <!ENTITY objList "http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl">
 <!ENTITY time "http://www.isi.edu/~pan/damltime/time-entry.owl">
 <!ENTITY actor "http://www.daml.org/services/owl-s/1.1/ActorDefault.owl">

 <!ENTITY service "http://www.daml.org/services/owl-s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl">

 <!ENTITY profileHierarchy "ProfileHierarchy.owl">
 <!ENTITY selectorHierarchy "SelectorHierarchy.owl">

 <!ENTITY fuselet_service "FuseletService.owl">
 <!ENTITY fuselet_profile "FuseletProfile.owl">
 <!ENTITY fuselet_process "FuseletProcess.owl">
 <!ENTITY fuselet_grounding "FuseletGrounding.owl">
 <!ENTITY fuselet_wsdl "FuseletGroundingWsdl.wsdl">

 <!ENTITY DEFAULT "FuseletService.owl">
 <!ENTITY THIS "FuseletService.owl">
]>

<rdf:RDF
 xmlns:rdf = "&rdf;#"
 xmlns:rdfs = "&rdfs;#"
 xmlns:xsd = "&xsd;#"
 xmlns:owl = "&owl;#"
 xmlns:expr = "&expr;#"
 xmlns:swrl = "&swrl;#"
 xmlns:objList = "&objList;#"

 xmlns:swrlx = "&swrlx;#"
 xmlns:ruleml = "&ruleml;#"
 xmlns:owlx = "&owlx;#"
 xmlns:swrlb = "&swrlb;#"

 xmlns:time = "&time;#"
 xmlns:actor = "&actor;#"

 xmlns:service = "&service;#"
 xmlns:profile = "&profile;#"
 xmlns:process = "&process;#"
 xmlns:grounding = "&grounding;#"

 xmlns:profileHierarchy = "&profileHierarchy;#"
 xmlns:selectorHierarchy = "&selectorHierarchy;#"

 xmlns:fuselet_service = "&fuselet_service;#"

48

 xmlns:fuselet_profile = "&fuselet_profile;#"
 xmlns:fuselet_process = "&fuselet_process;#"
 xmlns:fuselet_grounding = "&fuselet_grounding;#"
 xmlns:fuselet_wsdl = "&fuselet_wsdl;#"

 xmlns = "&DEFAULT;#"
 xml:base = "&DEFAULT;"
 >

 <owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: spec.xml 1.1 2005/11/14 22:33:31Z phmills Development $
 </owl:versionInfo>
 <rdfs:comment>
 This ontology represents the OWL-S service description for the
 Fuselet Tracker web service example.
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&grounding;" />
 <owl:imports rdf:resource="&time;" />
 <owl:imports rdf:resource="&actor;" />
 <owl:imports rdf:resource="&profileHierarchy;" />
 <owl:imports rdf:resource="&selectorHierarchy;" />
 <owl:imports rdf:resource="&fuselet_profile;" />
 <owl:imports rdf:resource="&fuselet_process;" />
 <owl:imports rdf:resource="&fuselet_grounding;" />
 </owl:Ontology>

<!--
#::
:
#:::: FuseletService.owl
#::
:
-->

<!-- ### -->
<!-- # OWL-S links to service profile, process model, and grounding. -->
<!-- ### -->

<!--###
 # TrackerService
 ###-->

<service:Service rdf:ID="TrackerService">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="&fuselet_profile;#TrackerProfile"/>

 <!-- Reference to the Process Model -->
 <service:describedBy rdf:resource="&fuselet_process;#TrackerProcess"/>

49

 <!-- Reference to the Grounding -->
 <service:supports rdf:resource="&fuselet_grounding;#TrackerGrounding"/>
</service:Service>

<!-- Inverse links -->

<profile:Profile rdf:about="&fuselet_profile;#TrackerProfile">
 <service:presentedBy rdf:resource="#TrackerService"/>
</profile:Profile>

<process:SimpleProcess rdf:about="&fuselet_process;#TrackerProcess">
 <service:describes rdf:resource="#TrackerService"/>
</process:SimpleProcess>

<grounding:WsdlGrounding rdf:about="&fuselet_grounding;#TrackerGrounding">
 <service:supportedBy rdf:resource="#TrackerService"/>
</grounding:WsdlGrounding>

<!--
#::
:
#:::: FuseletProfile.owl
#::
:
-->

<!-- ### -->
<!-- # Profile: Instance Definition of Tracker Service -->
<!-- ### -->

<!--
#==
=
This defines the service profile for a Tracker service.

The Parameters and Inputs/Outputs/Preconditions/Effects
are links to the definitions in the simple process model.

Tracker is defined as a Fuselet. It inherits from
the ontology of services, in ProfileHierarchy, that it is a Profile.

As an alternative approach, Tracker could be specified outside the
hierarchy of services by directly declaring it an instance of Profile,
and adjusting the relevant properties accordingly.
#==
=
-->

<profileHierarchy:Fuselet
 rdf:ID="TrackerProfile">

 <!-- reference to the service specification -->
 <service:presentedBy rdf:resource="&fuselet_service;#TrackerService"/>

50

 <profile:has_process rdf:resource="&fuselet_process;#TrackerProcess"/>

 <profile:serviceName>Fuselet_Tracker_Service</profile:serviceName>
 <profile:textDescription>
 This service provides a tracker fuselet.
 </profile:textDescription>

 <profile:contactInformation>
 <actor:Actor rdf:ID="Tracker_contacts">
 <actor:name>Some Author</actor:name>
 <actor:title>JBI Info Managment Staff</actor:title>
 <actor:phone> N/A </actor:phone>
 <actor:fax> N/A </actor:fax>
 <actor:email> N/A </actor:email>
 <actor:physicalAddress> N/A </actor:physicalAddress>
 <actor:webURL> N/A </actor:webURL>
 </actor:Actor>
 </profile:contactInformation>

 <profile:hasParameter rdf:resource="&fuselet_process;#sphere"/>
 <profile:hasParameter rdf:resource="&fuselet_process;#inTopic"/>
 <profile:hasParameter rdf:resource="&fuselet_process;#inSelector"/>
 <profile:hasParameter rdf:resource="&fuselet_process;#transform"/>
 <profile:hasParameter rdf:resource="&fuselet_process;#outTopic"/>
 <profile:hasParameter rdf:resource="&fuselet_process;#outCondition"/>

 <profile:hasInput rdf:resource="&fuselet_process;#sensorTopicIn"/>
 <profile:hasInput rdf:resource="&fuselet_process;#sensorTopic2In"/>

 <profile:hasOutput rdf:resource="&fuselet_process;#trackTopicOut"/>

 <!-- No preconditions - These would be global "guards".
 <profile:hasPrecondition rdf:resource="&fuselet_process;#InputExists"/>
 -->

 <profile:hasResult rdf:resource="&fuselet_process;#publishClause1"/>
 <profile:hasResult rdf:resource="&fuselet_process;#publishClause2"/>

</profileHierarchy:Fuselet>

<!--
#::
:
#:::: FuseletProcess.owl
#::
:
-->

<!-- ### -->
<!-- # Process Model: Atomic, Composite, and Simple Processes -->
<!-- ### -->

<!--

51

#==
=
This provides the process model for the service.

The process model holds atomic as well as composite process definitions.
In addition the process model holds simple process definitions, which are
an abstract version of a composite process that is not executable.

Two definitions are provided for the tracker service:
a simple process definition which abstracts its IOPE,
and a composite process definition which holds the BPEL.

The process model also holds the definitions for
the Parameters and Inputs/Outputs/Preconditions/Effects (IOPE),
and uses SWRL (Semantic Web Rule Language) to encode the
conditions and effects, which for fuselets are Horn clause if-then
statements.

Selectors are modeled as classes (or data range predicates),
with subtyping of selectors to capture information-object refinement.
Transforms are represented as individual property predicates that hold
between the output value and a list of other variables.
#==
=
-->

<!--###
 # Abstract simple process
 ###-->

<process:SimpleProcess rdf:ID="TrackerProcess" name="trackFuselet">
 <process:expandsTo rdf:resource="#TrackerBPEL"/>

<!--###
 # Parameters
 ###-->
<!-- Generic fuselet parameters : BPEL template supports subset of
 with fuselet specification in that it
 allows only one publish and subscribe.
 To be enhanced in follow-on work.
-->

 <process:hasParameter>
 <process:Parameter rdf:ID="sphere" default="jbi">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="inTopic" default="sensorTopic">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>

52

 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="inSelector" default="//metadata">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="transform" default="track">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="outTopic" default="trackTopic">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="outCondition" default="*">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

<!--###
 # Inputs and Outputs
 ###-->
 <process:hasInput>
 <process:Input rdf:ID="sensorTopicIn">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&selectorHierarchy;#sensorTopic</process:paramete
rType>
 </process:Input>
 </process:hasInput>

 <process:hasInput>
 <process:Input rdf:ID="sensorTopic2In">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&selectorHierarchy;#sensorTopic2</process:paramet
erType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="trackTopicOut">

53

 <process:parameterType
rdf:datatype="&xsd;#anyURI">&selectorHierarchy;#trackTopic</process:parameter
Type>
 </process:Output>
 </process:hasOutput>

<!--###
 # Conditions: An example of an empty precondition, or guard.
 ###-->
 <process:hasPrecondition>
 <expr:SWRL-Condition rdf:ID="InputExists">
 <expr:expressionLanguage rdf:resource="&expr;#SWRL"/>
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList rdf:about="&rdf;#nil"/>
 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:hasPrecondition>

<!--###
 # Effects: Result for each of the publish clauses.
 ###-->
 <process:hasResult>
 <process:Result rdf:ID="publishClause1">
 <rdfs:comment>
 The first if-then clause of the fuselet publishing actions.
 </rdfs:comment>

 <process:inCondition>
 <expr:SWRL-Condition rdf:ID="">
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="subscribe">
 <owlx:Individual owlx:name="sensorTopic" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="sensorSelector" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:classAtom>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:inCondition>

 <process:withOutput>
 <process:OutputBinding>
 <process:toParam rdf:resource="#trackTopicOut"/>
 <!--
 <process:valueSource>

54

 <process:ValueOf>
 <process:theVar rdf:resource="#trackTopicOut"/>
 </process:ValueOf>
 </process:valueSource>
 -->
 </process:OutputBinding>
 </process:withOutput>

 <process:hasEffect>
 <expr:SWRL-Expression>
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="publish">
 <owlx:Individual owlx:name="trackTopic" />
 <ruleml:Var>Output</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="refinedTrackSelector" />
 <ruleml:Var>Output</ruleml:Var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="track"
transform="true">
 <ruleml:Var>Output</ruleml:Var>
 <ruleml:Var>Subscriptions</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:builtinAtom swrlx:builtin="&swrlb;#listConcat">
 <ruleml:Var>Subscriptions</ruleml:Var>
 <ruleml:Var>X</ruleml:Var>
 </swrlx:builtinAtom>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>

 <process:hasResult>
 <process:Result rdf:ID="publishClause2">
 <rdfs:comment>
 The second if-then clause of the fuselet publishing actions.
 </rdfs:comment>

 <process:inCondition>
 <expr:SWRL-Condition rdf:ID="">
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="subscribe">

55

 <owlx:Individual owlx:name="sensorTopic" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="sensorSelector" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:classAtom>
 </ruleml:And>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="subscribe">
 <owlx:Individual owlx:name="sensorTopic2" />
 <ruleml:Var>Y</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="sensorSelector2" />
 <ruleml:Var>Y</ruleml:Var>
 </swrlx:classAtom>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:inCondition>

 <process:withOutput>
 <process:OutputBinding>
 <process:toParam rdf:resource="#trackTopicOut"/>
 <!--
 <process:valueSource>
 <process:ValueOf>
 <process:theVar rdf:resource="#trackTopicOut"/>
 </process:ValueOf>
 </process:valueSource>
 -->
 </process:OutputBinding>
 </process:withOutput>

 <process:hasEffect>
 <expr:SWRL-Expression>
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>
 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="publish">
 <owlx:Individual owlx:name="trackTopic" />
 <ruleml:Var>Output</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="trackSelector" />
 <ruleml:Var>Output</ruleml:Var>
 </swrlx:classAtom>
 <swrlx:individualPropertyAtom swrlx:property="track2"
transform="true">

56

 <ruleml:Var>Output</ruleml:Var>
 <ruleml:Var>Subscriptions</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:builtinAtom swrlx:builtin="&swrlb;#listConcat">
 <ruleml:Var>Subscriptions</ruleml:Var>
 <ruleml:Var>X</ruleml:Var>
 <ruleml:Var>Y</ruleml:Var>
 </swrlx:builtinAtom>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>

</process:SimpleProcess>

<!--###
 # BPEL (composite process)
 ###-->

<process:CompositeProcess rdf:ID="TrackerBPEL">
 <rdfs:comment>
 This composite process variant holds the executable BPEL.
 </rdfs:comment>
 <process:collapsesTo rdf:resource="#TrackerProcess"/>
 <process:composedOf>
 <!-- BPEL goes here -->
 </process:composedOf>
</process:CompositeProcess>

<!--
#::
:
#:::: FuseletGrounding.owl
#::
:
-->

<!-- ### -->
<!-- # Grounding: Mapping of service inputs and outputs into WSDL. -->
<!-- ### -->

<!--###
 # Grounding for Tracker Service
 #
 # A real fuselet grounding will look substantially
 # different, as it has start(), setParameter(),
 # and other methods.
 ###-->

57

<grounding:WsdlGrounding rdf:ID="TrackerGrounding">
 <rdfs:comment>
 The fuselet is an atomic process.
 There are also JBI atomic web services (not shown).
 </rdfs:comment>
 <grounding:hasAtomicProcessGrounding
rdf:resource="#TrackerAtomicGrounding"/>
</grounding:WsdlGrounding>

<!--###
 # Grounding for Atomic Process
 ###-->

<grounding:WsdlAtomicProcessGrounding rdf:ID="TrackerAtomicGrounding">
 <grounding:owlsProcess rdf:resource="&fuselet_process;#TrackerProcess"/>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#Tracker_PortType</grounding:portTy
pe>
 <grounding:operation
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#Tracker_operation</grounding:opera
tion>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#Tracker_Input</grounding:wsdlInput
Message>

 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="&fuselet_process;#input1"/>
 <grounding:wsdlMessagePart
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#topicIn1</grounding:wsdlMessagePar
t>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="&fuselet_process;#input2"/>
 <grounding:wsdlMessagePart
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#topicIn2</grounding:wsdlMessagePar
t>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 <grounding:wsdlOutputMessage
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#Tracker_Output</grounding:wsdlOutp
utMessage>

 <grounding:wsdlOutput>

58

 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource="&fuselet_process;#output1"/>
 <grounding:wsdlMessagePart
rdf:datatype="&xsd;#anyURI">&fuselet_wsdl;#topicOut</grounding:wsdlMessagePar
t>
 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>

 <grounding:wsdlReference rdf:datatype="&xsd;#anyURI">
 http://www.w3.org/TR/2001/NOTE-wsdl-20010315
 </grounding:wsdlReference>
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 &fuselet_wsdl;
 </grounding:wsdlDocument>
</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

Figure 9. Tracker Fuselet - Service Profile.

A.4.2 BPEL-Based Fuselet Business Logic.
The WSDL and BPEL for the publish-subscribe CAPI implementation, and the WSDL and
BPEL for the generic fuselet that can be parameterized for tracking and threat prediction
fuselets as well as a sensor publisher client, are shown below.

A.4.2.1 Publish-Subscribe WSDL.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="PublishSubscribe"
 targetNamespace="http://com.orielle.bpel.publishSubscribe"
 xmlns:tns="http://com.orielle.bpel.publishSubscribe"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 >

<!-- CORRELATION PROPERTIES DEFINITION -->
 <bpws:property name="instanceId" type="xsd:string"/>

<!-- ~~~
 TYPE DEFINITION - List of services participating in this BPEL process
 The default output of the BPEL designer uses strings as input and
 output to the BPEL Process. But you can define or import any XML
 Schema type and us them as part of the message types.
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>     
    <types>   
        <schema attributeFormDefault="unqualified"  
                elementFormDefault="qualified"  



59 

 

                targetNamespace="http://com.orielle.bpel.publishSubscribe"  
                xmlns="http://www.w3.org/2001/XMLSchema" 
                > 
                 
            <element name="initiateRequestType"> 
                <complexType> 
                    <sequence> 
                        <element name="params" type="string" /> 
                    </sequence> 
                </complexType> 
            </element> 
                   
            <element name="initiateResponseType"> 
                <complexType> 
                    <sequence> 
                        <element name="result" type="string"/> 
                    </sequence> 
                </complexType> 
            </element> 
             
            <complexType name="NameValuePairType">  
               <sequence> 
                   <element name="name" type="string"/> 
                   <element name="value" type="string"/> 
              </sequence> 
            </complexType> 
   
     <element name="PropertiesType"> 
                <complexType>  
                  <sequence> 
                      <element name="property" type="tns:NameValuePairType" 
maxOccurs="unbounded"/> 
                  </sequence> 
                </complexType> 
     </element> 
 
 
     <element name="Sphere" type="string"/> 
     <element name="Topic" type="string"/> 
     <element name="Selector" type="string"/> 
     <element name="MessageId" type="string"/> 
     <element name="MessageType" type="string"/> 
     <element name="Headers" type="string"/> 
     <element name="Metadata" type="string"/> 
     <element name="Payload" type="anyType"/> 
     <element name="SessionId" type="string"/> 
     <element name="Status" type="string"/> 
 
 
        </schema> 
    </types> 
   
 



60 

 

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  
     part of the port type defintions 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>
 <message name="messageEnvelope">
 <part name="metadata" element="tns:Metadata"/>
 <part name="payload" element="tns:Payload"/>
 <part name="correlationId" element="tns:SessionId"/>
 </message>

 <message name="subscriptionMessage">
 <part name="sphere" element="tns:Sphere"/>
 <part name="topic" element="tns:Topic"/>
 <part name="selector" element="tns:Selector"/>
 </message>

 <message name="sessionIdMessage">
 <part name="correlationId" element="tns:SessionId"/>
 </message>

 <message name="unsubscriptionMessage">
 <part name="correlationId" element="tns:SessionId"/>
 </message>

 <message name="initializeServerMessage">
 <part name="sphere" element="tns:Sphere"/>
 </message>

 <message name="statusMessage">
 <part name="status" element="tns:Status"/>
 </message>

<!-- ~~~
 PORT TYPE DEFINITION - A port type groups a set of operations into
 a logical service unit.
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
> 
    <!-- portType implemented by the PublishSubscribe BPEL process --> 
    <portType name="PublishSubscribe"> 
        <operation name="initiateServer"> 
            <input name="initiateRequest" 
message="tns:initializeServerMessage"/> 
            <output name="initiateResponse" message="tns:statusMessage"/> 
        </operation> 
 
        <operation name="createPublisher"> 
            <input name="createPublisherRequest" 
message="tns:subscriptionMessage"/> 
            <output name="createPublisherResponse" 
message="tns:sessionIdMessage"/> 
        </operation> 
 



61 

 

        <operation name="sendMessage"> 
            <input name="sendMessageRequest" message="tns:messageEnvelope"/> 
            <output name="sendMessageResponse" message="tns:statusMessage"/> 
        </operation> 
 
 
        <operation name="createSubscriber"> 
             <input name="createSubscriberRequest" 
message="tns:subscriptionMessage"/> 
      <output name="createSubscriberResponse" 
message="tns:sessionIdMessage"/> 
        </operation> 
 
        <operation name="subscribe"> 
             <input name="subscribeRequest" message="tns:sessionIdMessage"/> 
      <!-- 
             <input name="subscribeRequest" 
message="tns:subscriptionMessage"/> 
      --> 
      <!-- 
      <output name="subscribeResponse" message="tns:sessionIdMessage"/> 
      --> 
        </operation> 
 
        <operation name="getMessage"> 
            <input name="getMessageRequest" message="tns:sessionIdMessage"/> 
            <output name="getMessageResponse" message="tns:messageEnvelope"/> 
        </operation> 
 
        <operation name="unsubscribe"> 
             <input name="unsubscribeRequest" 
message="tns:unsubscriptionMessage"/> 
      <output name="unsubscribeResponse" message="tns:statusMessage"/> 
        </operation> 
    </portType> 
   
    <!-- portType implemented by the requester of PublishSubscribe BPEL 
process  
         for asynchronous callback purposes 
         --> 
    <portType name="SubscribeCallback"> 
        <operation name="onMessage"> 
            <input message="tns:messageEnvelope"/> 
        </operation> 
    </portType> 
   
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     PARTNER LINK TYPE DEFINITION 
         the PublishSubscribe partnerLinkType binds the provider and 
         requester portType into an asynchronous conversation. 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>
 <plnk:partnerLinkType name="PublishSubscribe">

62

 <plnk:role name="PublishSubscribeProvider">
 <plnk:portType name="tns:PublishSubscribe"/>
 </plnk:role>
 <plnk:role name="PublishSubscribeRequester">
 <plnk:portType name="tns:SubscribeCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

<!-- CORRELATION PROPERTIES DEFINITION -->
 <bpws:propertyAlias propertyName="tns:instanceId"
 messageType="tns:messageEnvelope" part="correlationId"
 query="/tns:SessionId" />

 <bpws:propertyAlias propertyName="tns:instanceId"
 messageType="tns:sessionIdMessage" part="correlationId"
 query="/tns:SessionId" />
</definitions>

Figure 10. Publish Subscribe - WSDL Interface Definition.

A.4.2.2 Publish-Subscribe BPEL implementation.

<!-- PublishSubscribe BPEL Process [Generated by the Oracle BPEL Designer] -
->
<process name="PublishSubscribe"
targetNamespace="http://com.orielle.bpel.publishSubscribe"
suppressJoinFailure="yes"
xmlns:tns="http://com.orielle.bpel.publishSubscribe"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:ora="http://schemas.oracle.com/xpath/extension">
 <bpelx:exec import="java.util.*"/>
 <bpelx:exec import="java.lang.*"/>
 <bpelx:exec import="java.rmi.RemoteException"/>
 <bpelx:exec import="org.w3c.dom.Element"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.JBI.*"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.XmlSpaces.*"/>
 <bpelx:exec import="org.infospherics.commonAPI.impl.*"/>
 <!-- === -->
 <!-- PARTNERLINKS -->
 <!-- List of services participating in this BPEL process -->
 <!-- === -->
 <partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="tns:PublishSubscribe"
myRole="PublishSubscribeProvider" partnerRole="PublishSubscribeRequester"/>
 </partnerLinks>
 <!-- === -->

63

 <!-- VARIABLES -->
 <!-- List of messages and XML documents used within this BPEL process -->
 <!-- === -->
 <variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="subscriptionRequest"
messageType="tns:subscriptionMessage"/>
 <variable name="message" messageType="tns:messageEnvelope"/>
 <variable messageType="tns:initializeServerMessage" name="sphere"/>
 <!-- Reference to the message that will be sent back to the
 requester during callback
 -->
 <variable name="correlationId" messageType="tns:sessionIdMessage"/>
 <variable name="status" messageType="tns:statusMessage"/>
 </variables>
 <!-- Correlation sets -->
 <correlationSets>
 <correlationSet name="Instance_set" properties="tns:instanceId"/>
 </correlationSets>
 <!-- === -->
 <!-- ORCHESTRATION LOGIC -->
 <!-- Set of activities coordinating the flow of messages across the -->
 <!-- services integrated within this business process -->
 <!-- === -->
 <sequence name="main">
 <!-- Receive input from requestor.
 Note: This maps to operation defined in PublishSubscribe.wsdl
 -->
 <pick name="pick-1" createInstance="yes">
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="createPublisher" variable="subscriptionRequest">
 <sequence>
 <assign name="assign-1">
 <copy>
 <from expression="ora:getInstanceId()"></from>
 <to variable="correlationId" part="correlationId"
query="/tns:SessionId"/>
 </copy>
 </assign>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-1">
 <![CDATA[
//===
=
// Java code snippet goes here ... : createPublisher
//===
=
 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("correlationId", "correlationId",
"/SessionId");
 String correlationId = ssn.getNodeValue();
 ssn = (Element) getVariableData("subscriptionRequest", "topic", "/Topic");

64

 String topic = ssn.getNodeValue();

 // Create connection and publisher
 try {

 ConnectionManager manager = new JbiConnectionManager();
 Connection connection = manager.createConnection(correlationId,
"clientDescription");
 PublisherSequence publisher = connection.createPublisherSequence(topic,
"1.0");

 } catch (Exception e) { addAuditTrailEntry("CreatePublisher error", e); };
//===
=
]]>
 </bpelx:exec>
 <reply name="reply-1" partnerLink="client"
portType="tns:PublishSubscribe" operation="createPublisher"
variable="correlationId"/>
 </sequence>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="subscribe" variable="correlationId">
 <sequence name="sequence-1">
 <scope name="scope-2">
 <variables>
 <variable messageType="tns:unsubscriptionMessage"
name="terminationId"/>
 </variables>
 <eventHandlers>
 <onMessage partnerLink="client"
portType="tns:PublishSubscribe" operation="unsubscribe"
variable="terminationId">
 <sequence>
 <reply name="reply-1" partnerLink="client"
portType="tns:PublishSubscribe" operation="unsubscribe" variable="status"/>
 <terminate name="terminate-2"/>
 </sequence>
 </onMessage>
 </eventHandlers>
 <while name="while-2" condition="true()">
 <sequence>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-4">
 <![CDATA[
//===
=
// Java code snippet goes here ... subscribe callback
//===
=
 // Retrieve variables from scope

65

 Element ssn = (Element) getVariableData("correlationId", "correlationId",
"/SessionId");
 String correlationId = ssn.getNodeValue();

 // Lookup connection and subscriber
 try {

 ConnectionManager manager = new JbiConnectionManager();
 Connection connection = manager.getConnection(correlationId);
 if (connection == null) {
 addAuditTrailEntry("No connection to subscriber");
 } else {
 addAuditTrailEntry("Connection to subscriber");
 }
 SubscriberSequence[] subscribers = connection.getSubscriberSequences();
 if (subscribers.length == 0) {
 addAuditTrailEntry("No subscribers");
 } else {
 addAuditTrailEntry("Found subscribers");
 }
 SubscriberSequence subscriber = subscribers[0];

 // Get message -- blocking wait (unlike JBI)
 InfoObject[] infoObjects = subscriber.getInfoObject();

 InfoObject infoObj = infoObjects[0];
 String metadata = infoObj.getInfoObjectMetadata();
 byte[] contentByte = (byte[]) infoObj.getInfoObjectPayload();
 String content = new String(contentByte);

 // Set result variables
 setVariableData("message", "metadata", "/Metadata", metadata);
 setVariableData("message", "payload", "/Payload", content);
 setVariableData("message", "correlationId", "/SessionId", correlationId);

 } catch (Exception e) { addAuditTrailEntry("Subscribe error", e); };
//===
=
]]>
 </bpelx:exec>
 <invoke name="invoke-2" partnerLink="client"
portType="tns:SubscribeCallback" operation="onMessage"
inputVariable="message"/>
 </sequence>
 </while>
 </scope>
 </sequence>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="initiateServer" variable="sphere">
 <sequence name="sequence-1">

66

 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-1">
 <![CDATA[
//===
=
// Java code snippet goes here ... initiateServer
//===
=
 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("sphere", "sphere", "/Sphere");
 String sphere = ssn.getNodeValue();

 //===== Create space
 try {

 IXmlSpaceManager manager = new XmlSpaceManager();
 // String sphere = "jbi.pubSub";
 manager.createSpace(sphere);
 JbiConnectionManager.setSphere(sphere);

 //===== Start the server
 Properties properties = new Properties();
 manager.createServer(sphere, properties);
 ISpaceServer server = manager.getServer(sphere);
 server.start();

 } catch (Exception e) { addAuditTrailEntry("Server initialization error",
e); };
//===
=
]]>
 </bpelx:exec>
 <reply name="reply-1" partnerLink="client"
portType="tns:PublishSubscribe" operation="initiateServer"
variable="status"/>
 </sequence>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="sendMessage" variable="message">
 <sequence>
 <assign name="assign-2">
 <copy>
 <from variable="message" part="correlationId"
query="/tns:SessionId"></from>
 <to variable="correlationId" part="correlationId"
query="/tns:SessionId"/>
 </copy>
 </assign>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-3">
 <![CDATA[

67

//===
=
// Java code snippet goes here ... publisher sendMessage
//===
=
 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("correlationId", "correlationId",
"/SessionId");
 String correlationId = ssn.getNodeValue();

 // Get message variables
 ssn = (Element) getVariableData("message", "metadata", "/Metadata");
 String metadata = ssn.getNodeValue();
 ssn = (Element) getVariableData("message", "payload", "/Payload");
 String content = ssn.getNodeValue();

 // Lookup connection and subscriber
 try {

 ConnectionManager manager = new JbiConnectionManager();

 Connection connection = manager.getConnection(correlationId);
 if (connection == null) {
 addAuditTrailEntry("No connection to publisher");
 } else {
 addAuditTrailEntry("Connection to publisher");
 }
 PublisherSequence[] publishers = connection.getPublisherSequences();
 if (publishers.length == 0) {
 addAuditTrailEntry("No publishers");
 } else {
 addAuditTrailEntry("Found publisher");
 }
 PublisherSequence publisher = publishers[0];

 // Put message
 String messageType = "jbi";

 if (! metadata.startsWith("<")) { // attach XML element
 metadata = "<metadata>" + metadata + "</metadata>";
 };
 if (! metadata.startsWith("<?xml")) { // prepend XML prolog
 metadata = "<?xml version='1.0' encoding='ISO-8859-1'?>"
 + metadata;
 };

 System.out.println("Published metadata: " + metadata);

 InfoObject infoObject = connection.createInfoObject(messageType, "1.0",
content, metadata);
 publisher.publishInfoObject(infoObject);

68

 } catch (Exception e) { addAuditTrailEntry("Publish error", e); };
//===
=
]]>
 </bpelx:exec>
 <reply name="reply-2" partnerLink="client"
portType="tns:PublishSubscribe" operation="sendMessage" variable="status"/>
 </sequence>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="createSubscriber" variable="subscriptionRequest">
 <sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/">
 <assign name="assign-2">
 <copy>
 <from expression="ora:getInstanceId()"></from>
 <to variable="correlationId" part="correlationId"
query="/tns:SessionId"/>
 </copy>
 </assign>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-2">
 <![CDATA[
//===
=
// Java code snippet goes here ... createSubscriber
//===
=
 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("correlationId", "correlationId",
"/SessionId");
 String correlationId = ssn.getNodeValue();
 ssn = (Element) getVariableData("subscriptionRequest", "topic", "/Topic");
 String topic = ssn.getNodeValue();
 ssn = (Element) getVariableData("subscriptionRequest", "selector",
"/Selector");
 String selector = ssn.getNodeValue();

 // Create connection and subscriber
 try {

 ConnectionManager manager = new JbiConnectionManager();
 Connection connection = manager.createConnection (correlationId,
"clientDescription");
 SubscriberSequence subscriber = connection.createSubscriberSequence(topic,
"1.0");
 subscriber.setSequencePredicate(selector);
 subscriber.setSequenceAttribute("warn", "1.0", "true");
 subscriber.activateSequence();

 } catch (Exception e) { addAuditTrailEntry("CreateSubscriber error", e);
};

69

//===
=
]]>
 </bpelx:exec>
 <reply name="reply-1" partnerLink="client"
portType="tns:PublishSubscribe" operation="createSubscriber"
variable="correlationId"/>
 </sequence>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:PublishSubscribe"
operation="getMessage" variable="correlationId">
 <sequence>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="exec-4">
 <![CDATA[
//===
=
// Java code snippet goes here ... getMessage
//===
=
 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("correlationId", "correlationId",
"/SessionId");
 String correlationId = ssn.getNodeValue();

 // Lookup connection and subscriber
 try {

 ConnectionManager manager = new JbiConnectionManager();
 Connection connection = manager.getConnection(correlationId);
 if (connection == null) {
 addAuditTrailEntry("No connection to subscriber");
 } else {
 addAuditTrailEntry("Connection to subscriber");
 }
 SubscriberSequence[] subscribers = connection.getSubscriberSequences();
 if (subscribers.length == 0) {
 addAuditTrailEntry("No subscribers");
 } else {
 addAuditTrailEntry("Found subscribers");
 }
 SubscriberSequence subscriber = subscribers[0];

 // Get message -- blocking wait (unlike JBI)
 InfoObject[] infoObjects = subscriber.getInfoObject();

 InfoObject infoObj = infoObjects[0];
 String metadata = infoObj.getInfoObjectMetadata();
 byte[] contentByte = (byte[]) infoObj.getInfoObjectPayload();
 String content = new String(contentByte);

 // Set result variables

70

 setVariableData("message", "metadata", "/Metadata", metadata);
 setVariableData("message", "payload", "/Payload", content);
 setVariableData("message", "correlationId", "/SessionId", correlationId);

 } catch (Exception e) { addAuditTrailEntry("Subscribe error", e); };
//===
=
]]>
 </bpelx:exec>
 <reply name="reply-1" partnerLink="client"
portType="tns:PublishSubscribe" operation="getMessage" variable="message"/>
 </sequence>
 </onMessage>
 </pick>
 <!-- Generate reply to synchronous request -->
 <!-- Asynchronous callback to the requester.
 Note: the callback location and correlation id is transparently
handled
 using WS-addressing.
 -->
 <!--
 <invoke name="callbackClient"
 partnerLink="client"
 portType="tns:SubscribeCallback"
 operation="onMessage"
 inputVariable="message"
 />
 -->
 </sequence>
</process>

Figure 11. Publish Subscribe - BPEL Business Logic.

A.4.2.3 Generic Fuselet WSDL.

<?xml version="1.0"?>
<definitions name="FuseletTransform"
 targetNamespace="http://com.orielle.bpel.fuselets"
 xmlns:tns="http://com.orielle.bpel.fuselets"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 >

<!-- ~~~
 TYPE DEFINITION - List of services participating in this BPEL process
 The default output of the BPEL designer uses strings as input and
 output to the BPEL Process. But you can define or import any XML
 Schema type and us them as part of the message types.

71


     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>     
    <types>   
        <schema attributeFormDefault="unqualified"  
                elementFormDefault="qualified"  
                targetNamespace="http://com.orielle.bpel.fuselets"  
                xmlns="http://www.w3.org/2001/XMLSchema" 
                > 
                 
            <element name="Parameters"> 
                <complexType> 
                    <sequence> 
                        <element name="sphere" type="string" /> 
                        <element name="inTopic" type="string" /> 
    <!-- none --> 
                        <element name="inSelector" type="string" /> 
    <!-- none --> 
                        <element name="transform" type="string" /> 
    <!-- sensor, track, receiver --> 
                        <element name="outTopic" type="string" /> 
                        <element name="outCondition" type="string" /> 
                    </sequence> 
                </complexType> 
            </element> 
                   
            <element name="InstanceId"> 
                <complexType> 
                    <sequence> 
                        <element name="instanceId" type="string"/> 
                    </sequence> 
                </complexType> 
            </element> 
 
     <element name="SessionId" type="string"/> 
             
        </schema> 
    </types> 
 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  
     part of the port type defintions 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>
 <message name="inputParametersMessage">
 <part name="payload" element="tns:Parameters"/>
 </message>

 <message name="instanceIdMessage">
 <part name="payload" element="tns:InstanceId"/>
 </message>

 <message name="sessionIdMessage">
 <part name="correlationId" element="tns:SessionId"/>

72

 </message>

<!-- ~~~
 PORT TYPE DEFINITION - A port type groups a set of operations into
 a logical service unit.
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
> 
    <!-- portType implemented by the FuseletTransform BPEL process --> 
 
    <portType name="FuseletTransform"> 
        <operation name="initiate"> 
            <input name="initiateRequest" 
message="tns:inputParametersMessage"/> 
            <output name="initiateResponse" message="tns:instanceIdMessage"/> 
 </operation> 
 
 <operation name="start"> 
     <input name="startRequest" message="tns:sessionIdMessage"/> 
 </operation> 
 
 <operation name="pause"> 
     <input name="pauseRequest" message="tns:sessionIdMessage"/> 
 </operation> 
 
 <operation name="resume"> 
     <input name="resumeRequest" message="tns:sessionIdMessage"/> 
 </operation> 
 
 <operation name="stop"> 
     <input name="stopRequest" message="tns:sessionIdMessage"/> 
 </operation> 
    </portType> 
 
    <!-- portType implemented by the requester of FuseletTransform BPEL 
process  
         for asynchronous callback purposes 
         --> 
    <portType name="FuseletTransformCallback"> 
        <operation name="onResult"> 
            <input message="tns:instanceIdMessage"/> 
        </operation> 
    </portType> 
 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     PARTNER LINK TYPE DEFINITION 
         the FuseletTransform partnerLinkType binds the provider and 
         requester portType into an asynchronous conversation. 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
>
 <plnk:partnerLinkType name="FuseletTransform">
 <plnk:role name="FuseletTransformProvider">
 <plnk:portType name="tns:FuseletTransform"/>
 </plnk:role>

73

 <plnk:role name="FuseletTransformRequester">
 <plnk:portType name="tns:FuseletTransformCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

Figure 12. Generic Fuselet - WSDL Interface Definition.

A.4.2.4 Generic Fuselet BPEL implementation.

<!-- FuseletTransform BPEL Process [Generated by the Oracle BPEL Designer] -
->
<process name="FuseletTransform"
targetNamespace="http://com.orielle.bpel.fuselets" suppressJoinFailure="yes"
xmlns:tns="http://com.orielle.bpel.fuselets"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:jbi="http://com.orielle.bpel.publishSubscribe"
xmlns:nsxml0="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <bpelx:exec import="java.util.*"/>
 <bpelx:exec import="java.lang.*"/>
 <bpelx:exec import="java.rmi.RemoteException"/>
 <bpelx:exec import="org.w3c.dom.Element"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.JBI.*"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.XmlSpaces.*"/>
 <bpelx:exec import="org.infospherics.commonAPI.impl.*"/>
 <!-- === -->
 <!-- PARTNERLINKS -->
 <!-- List of services participating in this BPEL process -->
 <!-- === -->
 <partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="tns:FuseletTransform"
myRole="FuseletTransformProvider" partnerRole="FuseletTransformRequester"/>
 <partnerLink name="subscribeService"
partnerLinkType="jbi:PublishSubscribe" partnerRole="PublishSubscribeProvider"
myRole="PublishSubscribeRequester"/>
 <partnerLink name="publishService"
partnerLinkType="jbi:PublishSubscribe" partnerRole="PublishSubscribeProvider"
myRole="PublishSubscribeRequester"/>
 </partnerLinks>
 <!-- === -->
 <!-- VARIABLES -->
 <!-- List of messages and XML documents used within this BPEL process -->
 <!-- === -->

74

 <variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="params" messageType="tns:inputParametersMessage"/>
 <!-- Reference to the message that will be sent back to the
 requester during callback
 -->
 <variable name="instanceId" messageType="tns:instanceIdMessage"/>
 <variable name="inSessionId" messageType="tns:sessionIdMessage"/>
 <variable name="isPaused" type="xsd:boolean"/>
 <variable name="subscriptionRequest"
messageType="jbi:subscriptionMessage"/>
 <variable name="inMessage" messageType="jbi:messageEnvelope"/>
 <variable name="publisherCorrelationId"
messageType="jbi:sessionIdMessage"/>
 <variable name="publishRequest" messageType="jbi:subscriptionMessage"/>
 <variable name="outMessage" messageType="jbi:messageEnvelope"/>
 <variable name="subscriberCorrelationId"
messageType="jbi:sessionIdMessage"/>
 <variable name="status" messageType="jbi:statusMessage"/>
 </variables>
 <!-- === -->
 <!-- ORCHESTRATION LOGIC -->
 <!-- Set of activities coordinating the flow of messages across the -->
 <!-- services integrated within this business process -->
 <!-- === -->
 <sequence name="main">
 <!-- Receive input from requestor.
 Note: This maps to operation defined in FuseletTransform.wsdl
 -->
 <receive name="receiveInput" partnerLink="client"
portType="tns:FuseletTransform" operation="initiate" variable="params"
createInstance="yes"/>
 <!-- Asynchronous callback to the requester.
 Note: the callback location and correlation id is transparently
handled
 using WS-addressing.
 -->
 <assign name="setInstanceId">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-1"/></bpeld:annotation><copy>
 <from expression="ora:getInstanceId()"></from>
 <to variable="instanceId" part="payload"
query="/tns:InstanceId/tns:instanceId"/>
 </copy>
 <copy>
 <from expression="false()"></from>
 <to variable="isPaused"/>
 </copy>
 </assign>
 <reply name="reply-1" partnerLink="client"
portType="tns:FuseletTransform" operation="initiate" variable="instanceId"/>
 <sequence name="TransformProcess">

75

 <assign name="setSubscriptionRequest">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-2"/></bpeld:annotation><copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:sphere"></from>
 <to variable="publishRequest" part="sphere" query="/jbi:Sphere"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:sphere"></from>
 <to variable="subscriptionRequest" part="sphere"
query="/jbi:Sphere"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:inTopic"></from>
 <to variable="subscriptionRequest" part="topic"
query="/jbi:Topic"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:inSelector"></from>
 <to variable="subscriptionRequest" part="selector"
query="/jbi:Selector"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:outTopic"></from>
 <to variable="publishRequest" part="topic" query="/jbi:Topic"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:inSelector"></from>
 <to variable="publishRequest" part="selector"
query="/jbi:Selector"/>
 </copy>
 </assign>
 <switch name="switch-2">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="switch-2"/></bpeld:annotation><case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:outTopic')) != 'none'">
 <invoke name="invoke-2" partnerLink="publishService"
portType="jbi:PublishSubscribe" operation="createPublisher"
inputVariable="publishRequest" outputVariable="publisherCorrelationId"/>
 </case>
 <otherwise>
 <empty name="empty-3"/>
 </otherwise>
 </switch>
 <switch name="switch-3">

76

 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:inTopic')) != 'none'">
 <invoke name="invoke-1" partnerLink="subscribeService"
portType="jbi:PublishSubscribe" operation="createSubscriber"
inputVariable="subscriptionRequest"
outputVariable="subscriberCorrelationId"/>
 </case>
 <otherwise>
 <empty name="empty-2"/>
 </otherwise>
 </switch>
 <scope name="InteractionHandler"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <eventHandlers>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="stop" variable="inSessionId">
 <terminate name="terminate-1"/>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="resume" variable="inSessionId">
 <empty/>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="pause" variable="inSessionId">
 <assign name="setIsPaused">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-4"/></bpeld:annotation><copy>
 <from expression="true()"></from>
 <to variable="isPaused"/>
 </copy>
 </assign>
 </onMessage>
 </eventHandlers>
 <while name="TransformLoop" condition="true()">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="while-1"/></bpeld:annotation><sequence>
 <switch name="switch-4">
 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:inTopic')) != 'none'">
 <sequence>
 <invoke name="invoke-1" partnerLink="subscribeService"
portType="jbi:PublishSubscribe" operation="getMessage"
inputVariable="subscriberCorrelationId" outputVariable="inMessage"/>
 </sequence>
 </case>
 <otherwise>
 </otherwise>
 </switch>
 <switch name="switch-1">

77

 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="switch-1"/></bpeld:annotation><case
condition="boolean(bpws:getVariableData('isPaused'))">
 <receive createInstance="no" name="receive-2"
partnerLink="client" portType="tns:FuseletTransform" operation="resume"
variable="inSessionId"/>
 </case>
 <otherwise>
 <empty name="empty-1"/>
 </otherwise>
 </switch>
 <assign name="copyMessage">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-2"/></bpeld:annotation><copy>
 <from variable="inMessage"></from>
 <to variable="outMessage"/>
 </copy>
 </assign>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="transform">
 <![CDATA[
//===
=
// Java code snippet goes here ... perform transform
//===
=
 try {

 // Retrieve variables from scope
 Element ssn = (Element) getVariableData("publisherCorrelationId",
"correlationId", "/SessionId");
 String correlationId = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:inTopic");
 String inTopic = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:outTopic");
 String outTopic = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:transform");
 String transform = ssn.getNodeValue();
 ssn = (Element) getVariableData("inMessage", "metadata", "/Metadata");
 String metadata = ssn.getNodeValue();
 ssn = (Element) getVariableData("inMessage", "payload", "/Payload");
 String content = ssn.getNodeValue();

 // Sleep for a while
 Thread.sleep(1000);

 // Perform transform

78

 //====
 // if (! inTopic.equals("none")) { };
 //====
 if (transform.equals("sensor")) {
 System.out.println("Sensor output generated");
 metadata = "<metadata><sensor>ewr</sensor></metadata>";
 content = "<sensorReturn>0 1 0</sensorReturn>";
 } else if (transform.equals("track")) {
 System.out.println("Track updated");
 metadata = "<metadata><track>ewr</track></metadata>";
 content = "<track>1 1 1</track>";
 } else if (transform.equals("threat")) {
 System.out.println("Threat issued");
 metadata = "<metadata><threat>ewr</threat></metadata>";
 content = "<threat>1 1 1</threat>";
 };
 //====
 // if (! outTopic.equals("none")) { };
 //====

 // Set result variables
 setVariableData("outMessage", "metadata", "/Metadata", metadata);
 setVariableData("outMessage", "payload", "/Payload", content);
 setVariableData("outMessage", "correlationId", "/SessionId",
correlationId);

 } catch (Exception e) { addAuditTrailEntry("Transform error", e); };
//===
=
]]>
 </bpelx:exec>
 <assign name="setPubCorrelationId">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-1"/></bpeld:annotation><copy>
 <from variable="publisherCorrelationId"
part="correlationId" query="/jbi:SessionId"></from>
 <to variable="outMessage" part="correlationId"
query="/jbi:SessionId"/>
 </copy>
 </assign>
 <switch name="switch-5">
 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:outTopic')) != 'none'">
 <invoke name="invoke-3" partnerLink="publishService"
portType="jbi:PublishSubscribe" operation="sendMessage"
inputVariable="outMessage" outputVariable="status"/>
 </case>
 <otherwise>
 </otherwise>
 </switch>
 </sequence>

79

 </while>
 </scope>
 </sequence>
 </sequence>
</process>

Figure 13. Generic Fuselet - BPEL Business Logic.

A.4.3 Workflow Composition.
A.4.3.1 Specify Fuselet Goal.

The OWL-S for the goal of the fuselet to be synthesized is shown below. The fuselet goal is
to subscribe to refined threat warnings. Instead of using OWL-S below, the goal might be
alternatively described in shorter form as a Prova goal.

<?xml version='1.0' encoding='ISO-8859-1'?>

<!--
Copyright (C) 2005 Orielle, LLC.
-->

<!--
#==
=
This document provides an OWL-S specification
for a goal of a refined threat subscription.

It is used to generate a workflow composition of fuselets to achieve the
goal.

There are basically two ways to perform fuselet synthesis.
(1) The first is to generate a workflow composition of fuselets to achieve
a goal subscription.
(2) The second is to generate a fuselet from a specification,
which technically can be accomplished by invoking a generic form of fuselet
with two inputs and two outputs, and parameterized of the form
(inTopic, inCondition, [in2...], transform, outTopic, outCondition,
[out2...])
A third way is to combine the two above, in a generic form
of fuselet that acts as a fuselet and also has a component
to invoke workflows of other fuselets in order to achieve subscription
dependencies.

Logic specification
===================
The goal has a Horn clause specification of:
refinedThreatFuselet() {
IF subscribe(threatTopic, refinedThreatSelector, X).
}
where uppercase words denote logical variables,
and X denotes the resulting transform after goal solution.

80

Service Profile
===============
For brevity we include only the ServiceProcess.
#==
=
-->

<!DOCTYPE uridef[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">

 <!ENTITY swrlx "http://www.w3.org/2003/11/swrlx">
 <!ENTITY ruleml "http://www.w3.org/2003/11/ruleml">
 <!ENTITY owlx "http://www.w3.org/2003/05/owl-xml">
 <!ENTITY swrlb "http://www.w3.org/2003/11/swrlb">

 <!ENTITY expr "http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl">
 <!ENTITY swrl "http://www.w3.org/2003/11/swrl">
 <!ENTITY objList "http://www.daml.org/services/owl-
s/1.1/generic/ObjectList.owl">
 <!ENTITY time "http://www.isi.edu/~pan/damltime/time-entry.owl">
 <!ENTITY actor "http://www.daml.org/services/owl-s/1.1/ActorDefault.owl">

 <!ENTITY service "http://www.daml.org/services/owl-s/1.1/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
 <!ENTITY grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl">

 <!ENTITY profileHierarchy "ProfileHierarchy.owl">
 <!ENTITY selectorHierarchy "SelectorHierarchy.owl">

 <!ENTITY fuselet_service "FuseletService.owl">
 <!ENTITY fuselet_profile "FuseletProfile.owl">
 <!ENTITY fuselet_process "FuseletProcess.owl">
 <!ENTITY fuselet_grounding "FuseletGrounding.owl">
 <!ENTITY fuselet_wsdl "FuseletGroundingWsdl.wsdl">

 <!ENTITY DEFAULT "FuseletService.owl">
 <!ENTITY THIS "FuseletService.owl">
]>

<rdf:RDF
 xmlns:rdf = "&rdf;#"
 xmlns:rdfs = "&rdfs;#"
 xmlns:xsd = "&xsd;#"
 xmlns:owl = "&owl;#"
 xmlns:expr = "&expr;#"
 xmlns:swrl = "&swrl;#"
 xmlns:objList = "&objList;#"

81

 xmlns:swrlx = "&swrlx;#"
 xmlns:ruleml = "&ruleml;#"
 xmlns:owlx = "&owlx;#"
 xmlns:swrlb = "&swrlb;#"

 xmlns:time = "&time;#"
 xmlns:actor = "&actor;#"

 xmlns:service = "&service;#"
 xmlns:profile = "&profile;#"
 xmlns:process = "&process;#"
 xmlns:grounding = "&grounding;#"

 xmlns:profileHierarchy = "&profileHierarchy;#"
 xmlns:selectorHierarchy = "&selectorHierarchy;#"

 xmlns:fuselet_service = "&fuselet_service;#"
 xmlns:fuselet_profile = "&fuselet_profile;#"
 xmlns:fuselet_process = "&fuselet_process;#"
 xmlns:fuselet_grounding = "&fuselet_grounding;#"
 xmlns:fuselet_wsdl = "&fuselet_wsdl;#"

 xmlns = "&DEFAULT;#"
 xml:base = "&DEFAULT;"
 >

 <owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: spec.xml 1.1 2005/11/14 22:33:31Z phmills Development $
 </owl:versionInfo>
 <rdfs:comment>
 This ontology represents the OWL-S service description for the
 Fuselet web service example.
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&grounding;" />
 <owl:imports rdf:resource="&time;" />
 <owl:imports rdf:resource="&actor;" />
 <owl:imports rdf:resource="&profileHierarchy;" />
 <owl:imports rdf:resource="&selectorHierarchy;" />
 <owl:imports rdf:resource="&fuselet_profile;" />
 <owl:imports rdf:resource="&fuselet_process;" />
 <owl:imports rdf:resource="&fuselet_grounding;" />
 </owl:Ontology>

<!--
#::
:
#:::: FuseletProcess.owl
#::
:

82

-->

<!--###
 # Process Model: Abstract simple process
 ###-->

<process:SimpleProcess rdf:ID="RefinedThreatProcess"
name="refinedThreatFuselet">
 <process:expandsTo rdf:resource="#RefinedThreatBPEL"/>

<!--###
 # Parameters
 ###-->
<!-- Generic fuselet parameters : BPEL template supports subset of
 with fuselet specification in that it
 allows only one publish and subscribe.
 To be enhanced in follow-on work.
-->

 <process:hasParameter>
 <process:Parameter rdf:ID="sphere" default="jbi">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="inTopic" default="threatTopic">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="inSelector" default="*">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="transform" default="refinedThreat">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

 <process:hasParameter>
 <process:Parameter rdf:ID="outTopic" default="threatTopic">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

83

 <process:hasParameter>
 <process:Parameter rdf:ID="outCondition" default="*">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&xsd;#string</process:parameterType>
 </process:Parameter>
 </process:hasParameter>

<!--###
 # Inputs and Outputs
 ###-->
 <process:hasInput>
 <process:Input rdf:ID="threatTopicIn">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&selectorHierarchy;#threatTopic</process:paramete
rType>
 </process:Input>
 </process:hasInput>

 <process:hasOutput>
 <process:Output rdf:ID="threatTopicOut">
 <process:parameterType
rdf:datatype="&xsd;#anyURI">&selectorHierarchy;#threatTopic</process:paramete
rType>
 </process:Output>
 </process:hasOutput>

<!--###
 # Conditions: An example of an empty precondition, or guard.
 ###-->
 <process:hasPrecondition>
 <expr:SWRL-Condition rdf:ID="InputExists">
 <expr:expressionLanguage rdf:resource="&expr;#SWRL"/>
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList rdf:about="&rdf;#nil"/>
 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:hasPrecondition>

<!--###
 # Effects: Result for each of the publish clauses.
 ###-->
 <process:hasResult>
 <process:Result rdf:ID="publishClause1">
 <rdfs:comment>
 The first if-then clause of the fuselet publishing actions.
 </rdfs:comment>

 <process:inCondition>
 <expr:SWRL-Condition rdf:ID="">
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>

84

 <ruleml:And>
 <swrlx:individualPropertyAtom swrlx:property="subscribe">
 <owlx:Individual owlx:name="threatTopic" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:individualPropertyAtom>
 <swrlx:classAtom>
 <owlx:Class owlx:name="threatSelector" />
 <ruleml:Var>X</ruleml:Var>
 </swrlx:classAtom>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:inCondition>

 <process:withOutput>
 <process:OutputBinding>
 <process:toParam rdf:resource="#threatTopicOut"/>
 <!--
 <process:valueSource>
 <process:ValueOf>
 <process:theVar rdf:resource="#threatTopicOut"/>
 </process:ValueOf>
 </process:valueSource>
 -->
 </process:OutputBinding>
 </process:withOutput>

 <process:hasEffect>
 <expr:SWRL-Expression>
 <expr:expressionBody rdf:parseType="Literal">

 <ruleml:And>
 <ruleml:And>
 </ruleml:And>
 </ruleml:And>

 </expr:expressionBody>
 </expr:SWRL-Expression>
 </process:hasEffect>
 </process:Result>
 </process:hasResult>

</process:SimpleProcess>

<!-- ### -->
<!-- # End of RDF definitions. -->
<!-- ### -->

</rdf:RDF>

Figure 14. Goal Specification - Refined Threat Subscription

85

A.4.3.2 Specify Running Fuselet Instances.

The Prova rules that specify the running fuselet instances are shown below. This instance
database, which typically would be derived from the fuselet runtime environment or its
monitors, are used by the theorem prover to avoid re-instantiating a fuselet if the demand for
the information it provides is already provided by a running fuselet.

% Facts about fuselet instances
exists_fuselet(sensorFuselet, [exists, sensorFuselet, L]) :-
 L=java.util.ArrayList(["jbi", "none", "none", "sensor", "sensorTopic",
"*"]).

Figure 15. Running Fuselet Instances

A.4.3.3 Create Composed Fuselet.

The script to execute the Workflow Composition Engine to create the composed fuselet is
shown below. The script is a Beanshell script for running the workflow composition engine
with the above demonstration files.

//===
=
// Spectrum - A Framework for
// Autonomic Fuselet Specification and Composition
//
// Demonstration Script
//
// Copyright (C) 2006, Orielle, LLC.
//===
=
import com.orielle.spectrum.Extensions.Workflow.*;

//====
// This demonstration script
// performs workflow composition from a fuselet goal and
// a set of specifications to an inferred set of fuselet invocations.
//
// The specifications are in the form of OWL-S specifications.
// The composition engine outputs a BPEL composition that
// invokes a parameterized generic fuselet BPEL web service for each
// derived fuselet invocation.
//
// The composition engine uses ancillary files including
// (1) An OWL ontology containing a hierarchy of selector terms.
// (2) A database of existing running fuselet instances, as Prova rules.
// (3) Supporting Prova rules, e.g., append.
// (4) A BPEL composition template.
//====

86

var w = new WorkflowComposition ();
w.setProperties("../config/properties_workflow.xml");

//====
// Read in a set of OWL-S fuselet specifications.
//====
var specs = new String[] { "spec_threat.owl", "spec_tracker.owl",
 "spec_sensor.owl" };
w.setSpecificationsFiles (specs);

//====
// Read in the OWL-S fuselet goal.
//====
var goal = "spec_goal.owl";
w.setGoalFile (goal);

//====
// Read in an OWL ontology containing a hierarchy of selector terms.
//====
w.setOntologyFile ("selector_ontology.owl");

//====
// Read in a database of existing running fuselet instances, as Prova rules.
//====
w.setInstancesFile ("instance_database.prova");

//====
// Perform workflow composition from goal and specification to invocation
set.
//
// (1) Extract the goals and specifications into Prova rules using XSLT.
// (2) Form a combined rule set using the extracted goals,
// specifications, instance database, and supporting rules.
// (3) Run Prova on the rules to infer fuselet invocations.
// (4) Generate BPEL fuselet invocations from the inference results.
// (5) Insert the BPEL invocations into the template.
//====
var bpel = w.infer();
if (bpel.equals("No solution")) {
 print ("No solution."); }
else { print("Solution found."); };

//====
// Get other result artifacts: extract rules in readable and formal form.
//====
var rules = w.getExtractedRules();
var readable = "";
for (i : specs) {
 readable += w.extractReadableRules(
 ProvaWrapper.fileToString(i), false) + "\n";
};
readable += w.extractReadableRules(
 ProvaWrapper.fileToString(goal), true) + "\n";

87

ProvaWrapper.stringToFile(rules, "outputs/rules.prova");
ProvaWrapper.stringToFile(readable, "outputs/readableRules.txt");
ProvaWrapper.stringToFile(bpel, "outputs/ComposedFuselet.bpel");

Figure 16. Workflow Composition - Beanshell Demonstration Script

A.4.3.4 Extracted Rules used in Synthesis

For purposes of illustration, the Prova rules for workflow synthesis extracted from the fuselet
specifications, goal, and instances are shown below.

%=================
% Supporting rules
%=================
% Concatenation of list in argument 2 to the list in argument 1
% is the list in argument 3
append([],L,L). % L appended to an empty list [] is L
append([X|L1],L2,[X|L3]):- % Any list L2 appended to a list starting
 % with X is a list starting with X
 append(L1,L2,L3).

% Subscription demand of a fuselet is satisfied by publication of another.
subscribe(X, Y, Z, H) :- publish(X, Y, Z, H).

%======================
% Fuselet specification
%======================
publish(threatTopic, S, threat(X), [P | H]) :-
 com.orielle.spectrum.Extensions.Workflow.OntologyModel.is_a(
"refinedThreatSelector", S),
 have_fuselet(threatFuselet, Pp),
 P=java.util.ArrayList(Pp),
 subscribe(trackTopic, "trackSelector", X, HX),
 append(HX, [], H).

have_fuselet(threatFuselet, P) :-
 exists_fuselet(threatFuselet, P), !.

have_fuselet(threatFuselet, P) :-
 run_fuselet(threatFuselet, P).

run_fuselet(threatFuselet, [create, threatFuselet, L]) :-
 L=java.util.ArrayList(
 ["jbi", "trackTopic", "*", "threat", "threatTopic", "*"]).

%======================
% Fuselet specification
%======================
publish(trackTopic, S, track(X), [P | H]) :-
 com.orielle.spectrum.Extensions.Workflow.OntologyModel.is_a(
"refinedTrackSelector", S),

88

 have_fuselet(trackFuselet, Pp),
 P=java.util.ArrayList(Pp),
 subscribe(sensorTopic, "sensorSelector", X, HX),
 append(HX, [], H).

publish(trackTopic, S, track2(X, Y), [P | H]) :-
 com.orielle.spectrum.Extensions.Workflow.OntologyModel.is_a(
"trackSelector", S),
 have_fuselet(trackFuselet, Pp),
 P=java.util.ArrayList(Pp),
 subscribe(sensorTopic, "sensorSelector", X, HX),
 subscribe(sensorTopic2, "sensorSelector2", Y, HY),
 append(HX, HY, H).

have_fuselet(trackFuselet, P) :-
 exists_fuselet(trackFuselet, P), !.

have_fuselet(trackFuselet, P) :-
 run_fuselet(trackFuselet, P).

run_fuselet(trackFuselet, [create, trackFuselet, L]) :-
 L=java.util.ArrayList(
 ["jbi", "sensorTopic", "//metadata", "track", "trackTopic", "*"]).

%======================
% Fuselet specification
%======================
publish(sensorTopic, S, sensor(data), [P | H]) :-
 com.orielle.spectrum.Extensions.Workflow.OntologyModel.is_a(
"sensorSelector", S),
 have_fuselet(sensorFuselet, Pp),
 P=java.util.ArrayList(Pp),
 append([], [], H).

have_fuselet(sensorFuselet, P) :-
 exists_fuselet(sensorFuselet, P), !.

have_fuselet(sensorFuselet, P) :-
 run_fuselet(sensorFuselet, P).

run_fuselet(sensorFuselet, [create, sensorFuselet, L]) :-
 L=java.util.ArrayList(
 ["jbi", "none", "none", "sensor", "sensorTopic", "*"]).

% Facts about fuselet instances
exists_fuselet(sensorFuselet, [exists, sensorFuselet, L]) :-
 L=java.util.ArrayList(["jbi", "none", "none", "sensor", "sensorTopic",
"*"]).

%=====
% Goal
%=====
synthesize(Instantiations) :-

89

 subscribe(threatTopic, "threatSelector", Z, Instantiations),
 com.orielle.spectrum.Extensions.Workflow.ProvaWrapper.setSolution(Instanti
ations).

Figure 17. Extracted Rules for Fuselet Synthesis

A.4.3.5 Resulting Composed Fuselet.

The BPEL for the synthesized fuselet is shown below. The resulting composed fuselet
initiates both tracking and threat fuselets, but not a sensor publisher which is recognized from
a set of instance facts as already running. The WSDL for the ComposedFuselet, which is not
shown, is identical to that for the generic FuseletTransform except for changing the name of
the program and partnerlinks.

<!-- FuseletTransform BPEL Process [Generated by the Oracle BPEL Designer] -
->
<process name="ComposedFuselet"
targetNamespace="http://com.orielle.bpel.fuselets" suppressJoinFailure="yes"
xmlns:tns="http://com.orielle.bpel.fuselets"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:jbi="http://com.orielle.bpel.publishSubscribe"
xmlns:nsxml0="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <bpelx:exec import="java.util.*"/>
 <bpelx:exec import="java.lang.*"/>
 <bpelx:exec import="java.rmi.RemoteException"/>
 <bpelx:exec import="org.w3c.dom.Element"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.JBI.*"/>
 <bpelx:exec import="com.orielle.saffire.Extensions.XmlSpaces.*"/>
 <bpelx:exec import="org.infospherics.commonAPI.impl.*"/>
 <!-- === -->
 <!-- PARTNERLINKS -->
 <!-- List of services participating in this BPEL process -->
 <!-- === -->
 <partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="tns:ComposedFuselet"
myRole="FuseletTransformProvider" partnerRole="FuseletTransformRequester"/>
 <partnerLink name="subscribeService"
partnerLinkType="jbi:PublishSubscribe" partnerRole="PublishSubscribeProvider"
myRole="PublishSubscribeRequester"/>
 <partnerLink name="publishService"
partnerLinkType="jbi:PublishSubscribe" partnerRole="PublishSubscribeProvider"
myRole="PublishSubscribeRequester"/>

90

 <!-- NEW WORKFLOW -->
 <partnerLink name="fuseletService"
partnerLinkType="tns:FuseletTransform" partnerRole="FuseletTransformProvider"
myRole="FuseletTransformRequester"/>
 </partnerLinks>
 <!-- === -->
 <!-- VARIABLES -->
 <!-- List of messages and XML documents used within this BPEL process -->
 <!-- === -->
 <variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="params" messageType="tns:inputParametersMessage"/>
 <!-- Reference to the message that will be sent back to the
 requester during callback
 -->
 <variable name="instanceId" messageType="tns:instanceIdMessage"/>
 <variable name="inSessionId" messageType="tns:sessionIdMessage"/>
 <variable name="isPaused" type="xsd:boolean"/>
 <variable name="subscriptionRequest"
messageType="jbi:subscriptionMessage"/>
 <variable name="inMessage" messageType="jbi:messageEnvelope"/>
 <variable name="publisherCorrelationId"
messageType="jbi:sessionIdMessage"/>
 <variable name="publishRequest" messageType="jbi:subscriptionMessage"/>
 <variable name="outMessage" messageType="jbi:messageEnvelope"/>
 <variable name="subscriberCorrelationId"
messageType="jbi:sessionIdMessage"/>
 <variable name="status" messageType="jbi:statusMessage"/>
 </variables>
 <!-- === -->
 <!-- ORCHESTRATION LOGIC -->
 <!-- Set of activities coordinating the flow of messages across the -->
 <!-- services integrated within this business process -->
 <!-- === -->
 <sequence name="main">
 <!-- Receive input from requestor.
 Note: This maps to operation defined in FuseletTransform.wsdl
 -->
 <receive name="receiveInput" partnerLink="client"
portType="tns:FuseletTransform" operation="initiate" variable="params"
createInstance="yes"/>
 <!-- Asynchronous callback to the requester.
 Note: the callback location and correlation id is transparently
handled
 using WS-addressing.
 -->
 <assign name="setInstanceId">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-1"/></bpeld:annotation><copy>
 <from expression="ora:getInstanceId()"></from>
 <to variable="instanceId" part="payload"
query="/tns:InstanceId/tns:instanceId"/>

91

 </copy>
 <copy>
 <from expression="false()"></from>
 <to variable="isPaused"/>
 </copy>
 </assign>
 <reply name="reply-1" partnerLink="client"
portType="tns:FuseletTransform" operation="initiate" variable="instanceId"/>

 <!-- INSERTED WORKFLOW -->
 <sequence name="ComposedProcess">
 <flow name="ComposedProcess">

 <sequence>
 <scope name="FuseletInvocation">
 <variables>
 <variable name="fparams" messageType="tns:inputParametersMessage"/>
 <variable name="uid" messageType="tns:instanceIdMessage"/>
 </variables>
 <sequence>
 <assign name="SetParameters">
 <copy>
 <from>
 <Parameters xmlns="http://com.orielle.bpel.fuselets">
 <sphere>jbi</sphere>
 <inTopic>trackTopic</inTopic>
 <inSelector>*</inSelector>
 <transform>threat</transform>
 <outTopic>threatTopic</outTopic>
 <outCondition>*</outCondition>
 </Parameters>
 </from>
 <to variable="fparams" part="payload"/>
 </copy>
 </assign>
 <invoke partnerLink="fuseletService" portType="tns:FuseletTransform"
operation="initiate" inputVariable="fparams" outputVariable="uid"/>
 </sequence>
 </scope>
 </sequence>

 <sequence>
 <scope name="FuseletInvocation">
 <variables>
 <variable name="fparams" messageType="tns:inputParametersMessage"/>
 <variable name="uid" messageType="tns:instanceIdMessage"/>
 </variables>
 <sequence>
 <assign name="SetParameters">
 <copy>
 <from>
 <Parameters xmlns="http://com.orielle.bpel.fuselets">
 <sphere>jbi</sphere>

92

 <inTopic>sensorTopic</inTopic>
 <inSelector>//metadata</inSelector>
 <transform>track</transform>
 <outTopic>trackTopic</outTopic>
 <outCondition>*</outCondition>
 </Parameters>
 </from>
 <to variable="fparams" part="payload"/>
 </copy>
 </assign>
 <invoke partnerLink="fuseletService" portType="tns:FuseletTransform"
operation="initiate" inputVariable="fparams" outputVariable="uid"/>
 </sequence>
 </scope>
 </sequence>

 </flow>
 </sequence>
 <sequence name="TransformProcess">
 <assign name="setSubscriptionRequest">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-2"/></bpeld:annotation><copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:sphere"></from>
 <to variable="publishRequest" part="sphere" query="/jbi:Sphere"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:sphere"></from>
 <to variable="subscriptionRequest" part="sphere"
query="/jbi:Sphere"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:inTopic"></from>
 <to variable="subscriptionRequest" part="topic"
query="/jbi:Topic"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:inSelector"></from>
 <to variable="subscriptionRequest" part="selector"
query="/jbi:Selector"/>
 </copy>
 <copy>
 <from variable="params" part="payload"
query="/tns:Parameters/tns:outTopic"></from>
 <to variable="publishRequest" part="topic" query="/jbi:Topic"/>
 </copy>
 <copy>

93

 <from variable="params" part="payload"
query="/tns:Parameters/tns:inSelector"></from>
 <to variable="publishRequest" part="selector"
query="/jbi:Selector"/>
 </copy>
 </assign>
 <switch name="switch-2">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="switch-2"/></bpeld:annotation><case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:outTopic')) != 'none'">
 <invoke name="invoke-2" partnerLink="publishService"
portType="jbi:PublishSubscribe" operation="createPublisher"
inputVariable="publishRequest" outputVariable="publisherCorrelationId"/>
 </case>
 <otherwise>
 <empty name="empty-3"/>
 </otherwise>
 </switch>
 <switch name="switch-3">
 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:inTopic')) != 'none'">
 <invoke name="invoke-1" partnerLink="subscribeService"
portType="jbi:PublishSubscribe" operation="createSubscriber"
inputVariable="subscriptionRequest"
outputVariable="subscriberCorrelationId"/>
 </case>
 <otherwise>
 <empty name="empty-2"/>
 </otherwise>
 </switch>
 <scope name="InteractionHandler"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <eventHandlers>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="stop" variable="inSessionId">
 <terminate name="terminate-1"/>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="resume" variable="inSessionId">
 <empty/>
 </onMessage>
 <onMessage partnerLink="client" portType="tns:FuseletTransform"
operation="pause" variable="inSessionId">
 <assign name="setIsPaused">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-4"/></bpeld:annotation><copy>
 <from expression="true()"></from>
 <to variable="isPaused"/>
 </copy>

94

 </assign>
 </onMessage>
 </eventHandlers>
 <while name="TransformLoop" condition="true()">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="while-1"/></bpeld:annotation><sequence>
 <switch name="switch-4">
 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:inTopic')) != 'none'">
 <sequence>
 <invoke name="invoke-1" partnerLink="subscribeService"
portType="jbi:PublishSubscribe" operation="getMessage"
inputVariable="subscriberCorrelationId" outputVariable="inMessage"/>
 </sequence>
 </case>
 <otherwise>
 </otherwise>
 </switch>
 <switch name="switch-1">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="switch-1"/></bpeld:annotation><case
condition="boolean(bpws:getVariableData('isPaused'))">
 <receive createInstance="no" name="receive-2"
partnerLink="client" portType="tns:FuseletTransform" operation="resume"
variable="inSessionId"/>
 </case>
 <otherwise>
 <empty name="empty-1"/>
 </otherwise>
 </switch>
 <assign name="copyMessage">
 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-2"/></bpeld:annotation><copy>
 <from variable="inMessage"></from>
 <to variable="outMessage"/>
 </copy>
 </assign>
 <bpelx:exec
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" language="java"
version="1.4" name="transform">
 <![CDATA[
//===
=
// Java code snippet goes here ... perform transform
//===
=
 try {

 // Retrieve variables from scope

95

 Element ssn = (Element) getVariableData("publisherCorrelationId",
"correlationId", "/SessionId");
 String correlationId = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:inTopic");
 String inTopic = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:outTopic");
 String outTopic = ssn.getNodeValue();
 ssn = (Element)
getVariableData("params","payload","/tns:Parameters/tns:transform");
 String transform = ssn.getNodeValue();
 ssn = (Element) getVariableData("inMessage", "metadata", "/Metadata");
 String metadata = ssn.getNodeValue();
 ssn = (Element) getVariableData("inMessage", "payload", "/Payload");
 String content = ssn.getNodeValue();

 // Sleep for a while
 Thread.sleep(1000);

 // Perform transform
 //====
 // if (! inTopic.equals("none")) { };
 //====
 if (transform.equals("sensor")) {
 System.out.println("Sensor output generated");
 metadata = "<metadata><sensor>ewr</sensor></metadata>";
 content = "<sensorReturn>0 1 0</sensorReturn>";
 } else if (transform.equals("track")) {
 System.out.println("Track updated");
 metadata = "<metadata><track>ewr</track></metadata>";
 content = "<track>1 1 1</track>";
 } else if (transform.equals("threat")) {
 System.out.println("Threat issued");
 metadata = "<metadata><threat>ewr</threat></metadata>";
 content = "<track>1 1 1</track>";
 };
 //====
 // if (! outTopic.equals("none")) { };
 //====

 // Set result variables
 setVariableData("outMessage", "metadata", "/Metadata", metadata);
 setVariableData("outMessage", "payload", "/Payload", content);
 setVariableData("outMessage", "correlationId", "/SessionId",
correlationId);

 } catch (Exception e) { addAuditTrailEntry("Transform error", e); };
//===
=
]]>
 </bpelx:exec>
 <assign name="setPubCorrelationId">

96

 <bpeld:annotation
xmlns:bpeld="http://schemas.oracle.com/bpel/eclipse/designer"><bpeld:meta
map.label="assign-1"/></bpeld:annotation><copy>
 <from variable="publisherCorrelationId"
part="correlationId" query="/jbi:SessionId"></from>
 <to variable="outMessage" part="correlationId"
query="/jbi:SessionId"/>
 </copy>
 </assign>
 <switch name="switch-5">
 <case
condition="string(bpws:getVariableData('params','payload','/tns:Parameters/tn
s:outTopic')) != 'none'">
 <invoke name="invoke-3" partnerLink="publishService"
portType="jbi:PublishSubscribe" operation="sendMessage"
inputVariable="outMessage" outputVariable="status"/>
 </case>
 <otherwise>
 </otherwise>
 </switch>
 </sequence>
 </while>
 </scope>
 </sequence>
 </sequence>
</process>

Figure 18. Synthesized Fuselet Workflow

